
YOLOv7
Threat Model and Code Review

October 31, 2023

Prepared by: Alvin Crighton, Anusha Ghosh, Heidy Khlaaf, Jim Miller, Kurt Willis, Maciej
Domanski, Spencer Michaels, Suha Hussain, and William Woodruff

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high- end security research with a real -world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 YOLO Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2023 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information. Material within this report
may not be reproduced or distributed in part or in whole without the express written
permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 YOLO Security Assessment
PUBLIC

https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits 1

Notices and Remarks 2

Table of Contents 3

Executive Summary 5

Project Summary 8

Project Goals 9

Project Targets 10

Project Coverage 11

Lightweight Threat Model 13

Data Types 13

Data Flow 14

Components and Trust Zones 15

Trust Zone Connections 17

Threat Actors 18

Threat Scenarios 19

Automated Testing 22

Codebase Maturity Evaluation 23

Summary of Findings 26

Detailed Findings 28

1. Multiple uses of subprocess.check_output with shell=True could allow command
injection 28

2. Models are stored and loaded as pickle files throughout the YOLO codebase 30

3. Parsing of YAML config file can lead to arbitrary code execution 32

4. Untrusted pre-trained models can lead to arbitrary code execution 34

5. Multiple uses of os.system could allow command injection 36

Trail of Bits 3 YOLO Security Assessment
PUBLIC

6. Use of unencrypted HTTP protocol 38

7. Insecure origin check 39

8. The check_dataset function downloads and unzips files from arbitrary URLs 40

9. Insufficient input validation in triton inference server could result in uncaught
exception at runtime 42

10. Improper use of TorchScript tracing leads to model differentials 45

11. Project lacks adequate testing framework 47

12. Flaw in detect.py will cause runtime exceptions to occur when using a traced
model 48

A. Vulnerability Categories 49

B. Code Maturity Categories 51

C. Code Quality Recommendations 53

D. Automated Testing 56

Trail of Bits 4 YOLO Security Assessment
PUBLIC

Executive Summary

Engagement Overview
Trail of Bits performed a lightweight threat model and secure code review of YOLOv7.
YOLO, short for “You Only Look Once,” is a popular model in computer vision used for
real-time object detection. YOLO has gained popularity because it achieves high accuracy
despite being only a single neural network that requires only a single evaluation. This
makes YOLO particularly strong for applications that require detecting objects in real-time,
such as autonomous vehicles.

A team of two consultants conducted the lightweight threat modeling exercise for YOLOv7
from May 30, 2023 to June 2, 2023, for a total of two engineer-weeks of effort. After the
threat modeling exercise was completed, the team shared the results with the entire Trail
of Bits team. Shortly after, a team of two different consultants performed a targeted secure
code review of the YOLOv7 codebase from June 7, 2023 to June 16, 2023, for a total of two
engineer-weeks of effort.

Our testing efforts focused on threat scenarios identified during the threat modeling
exercise, such as the potential compromise of datasets used by YOLOv7. With full access to
the YOLOv7 source code, original YOLO papers, and the YOLO documentation, we
performed static testing of the codebase, using automated and manual processes.

Observations and Impact
As currently written, the YOLOv7 codebase is not suitable for security-critical applications
or applications that require high availability, such as autonomous vehicles. We reach this
conclusion for two main reasons. First, the codebase is not written or designed defensively.
User and external data inputs are poorly validated and sanitized (TOB-YOLO-9). If an
attacker is able to control or manipulate various inputs to the system, such as model files,
data files, or configuration files, they could perform a denial-of-service attack with low
effort (TOB-YOLO-8, TOB-YOLO-9, and TOB-YOLO-12). Other, more severe threats, such as
arbitrary code execution, are also possible (TOB-YOLO-1, TOB-YOLO-2, TOB-YOLO-3,
TOB-YOLO-4). Additionally, there are no unit tests or any testing framework in place
(TOB-YOLO-11); in its current state, codebase regressions are probable, and other
implementation flaws are likely to exist.

Second, we identified multiple issues related to the unnecessary use of dangerously
permissive functions, such as subprocess.check_output (TOB-YOLO-1), eval
(TOB-YOLO-3), and os.system (TOB-YOLO-5). Although the difficulty of these issues is high,
an attacker who successfully exploits them could obtain remote code execution, which is
an unacceptable risk for security-critical systems.

Trail of Bits 5 YOLO Security Assessment
PUBLIC

Recommendations
Based on the lightweight threat modeling exercise, codebase maturity evaluation, and
findings identified during the security review, Trail of Bits recommends taking the following
steps to better secure the YOLOv7 system:

● Remediate the findings disclosed in this report. These findings should be
addressed as part of a direct remediation or as part of any refactor that may occur
when addressing other recommendations.

● Implement an adequate testing framework with comprehensive unit tests and
integration tests. Multiple findings in this report could have been prevented with a
set of unit tests covering both the happy and sad code paths. In its current state of
no unit testing, we believe that other implementation flaws are likely present and
code regressions are likely to occur.

● Remove the use of highly permissive functions, such as
subprocess.check_output, eval, and os.system. As discussed in the individual
findings, many instances of these risky functions are unnecessary and have a safer
alternative. Each of these instances should be carefully reviewed and strongly
considered for removal, as their presence introduces a level of risk unacceptable for
security-critical systems.

● Make improvements to the development process of the codebase. Code
scanning tools such as Semgrep, CodeQL, and bandit uncovered multiple security
issues and code quality issues that are included in this report. Including tools such
as these in the development process will help prevent similar issues from occurring
in the future. In addition, a proper testing framework and contribution guidelines
for the codebase will help prevent codebase regressions.

● Enforce the usage of secure protocols when available. We note instances where
HTTP is used instead of HTTPS. In addition, secure versions of the RMTP/RTSP
protocols (RTMPS and RTSPS) should be supported.

● Keep dependencies as updated as possible to ensure upstream security fixes
are applied. As identified during the lightweight threat model, malicious code or
vulnerabilities in various dependencies used by YOLOv7 are an important threat
scenario to consider. Tools such as pip-audit can be integrated into the
development process to make this process automatic.

● Provide documentation to users about the potential threats when using data
from untrusted training data or webcam streams. As discussed, we believe that
YOLOv7 is currently not suited for use in security-critical systems. Users should be
warned that the system does not sufficiently protect against inputs being obtained
from external sources (such as training data and webcam streams).

Trail of Bits 6 YOLO Security Assessment
PUBLIC

https://github.com/PyCQA/bandit
https://pypi.org/project/pip-audit/

The following tables provide the number of findings by severity and category.

EXPOSURE ANALYSIS

Severity Count

High 5

Medium 2

Low 4

Informational 1

CATEGORY BREAKDOWN

Category Count

Cryptography 1

Data Validation 7

Denial of Service 3

Testing 1

Trail of Bits 7 YOLO Security Assessment
PUBLIC

Project Summary

Contact Information
The following managers were associated with this project:

Dan Guido, Account Manager Brooke Langhorne, Project Manager
dan@trailofbits.com brooke.langhorne@trailofbits.com

The following engineers were associated with this project:

Alvin Crighton, Consultant Anusha Ghosh, Consultant
alvin.crighton@trailofbits.com anusha.ghosh@trailofbits.com

Heidy Khlaaf, Consultant Jim Miller, Consultant
heidy.khlaaf@trailofbits.com james.miller@trailofbits.com

Kurt Willis, Consultant Maciej Domanski, Consultant
kurt.willis@trailofbits.com maciej.domanski@trailofbits.com

Spencer Michaels, Consultant Suha Hussain, Consultant
spencer.michaels@trailofbits.com suha.hussain@trailofbits.com

William Woodruff, Consultant
william.woodruff@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

October 31, 2023 Publication of comprehensive report

Trail of Bits 8 YOLO Security Assessment
PUBLIC

mailto:dan@trailofbits.com
mailto:brooke.langhorne@trailofbits.com
mailto:alvin.crighton@trailofbits.com
mailto:anusha.ghosh@trailofbits.com
mailto:heidy.khlaaf@trailofbits.com
mailto:james.miller@trailofbits.com
mailto:kurt.willis@trailofbits.com
mailto:maciej.domanski@trailofbits.com
mailto:spencer.michaels@trailofbits.com
mailto:suha.hussain@trailofbits.com
mailto:william.woodruff@trailofbits.com

Project Goals

The engagement was scoped to provide a security assessment of the YOLOv7 codebase.
Specifically, we sought to answer the following non-exhaustive list of questions:

● Does the codebase have any security issues that would enable any of the threats
listed in the threat scenarios section of Trail of Bits’s threat modeling exercise?

● Can a malicious dataset or model file be used to exploit the system?

● Can a network insider or local attacker use their access to compromise a system
running YOLO?

● Can an attacker execute code remotely on a target’s machine through a
compromised dataset, model, or configuration files?

● Does the codebase implement complex arithmetic correctly and safely? Is it properly
tested?

● Are the YOLO codebase dependencies up to date?

● Does the codebase adhere to the best practices for Python codebases?

● Can any improvements be made to the CI/CD of the project?

Trail of Bits 9 YOLO Security Assessment
PUBLIC

Project Targets

The engagement involved a review and testing of the following target.

YOLOv7
Repository https://github.com/WongKinYiu/yolov7

Version 3b41c2c

Type Real-time object detector

Platform Python

Trail of Bits 10 YOLO Security Assessment
PUBLIC

https://github.com/WongKinYiu/yolov7/

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. We performed a lightweight threat model of the entire
system. We then used the results from our lightweight threat model to inform areas of the
codebase to review during our secure code review. Our approaches for code review
included the following:

● Triton inference server. We used Semgrep and CodeQL to automatically identify
code quality issues as well as potential security issues. We also performed a manual
review of this component, focusing on how the deployment processes, validates,
and sanitizes user or external data inputs.

● Models. We used Semgrep and CodeQL to automatically identify code quality issues
as well as potential security issues. We performed a high-level manual review of this
component, focusing on best development practices for Python.

● Utilities. We used Semgrep and CodeQL to automatically identify code quality
issues as well as potential security issues. We performed a manual review of various
critical utility functions that are used throughout the codebase, such as the
functions for parsing configuration files and for downloading external datasets,
since these were threat scenarios identified during the threat modeling exercise.

● Main model scripts (detect.py, export.py, hubconf.py, test.py,
train_aux.py, train.py). We used Semgrep and CodeQL to automatically
identify code quality issues as well as potential security issues. We also performed a
manual review of this component, focusing on how the user or external data is
processed, validated, and sanitized before use. We also focused on verifying that
this component follows best development practices for Python.

Coverage Limitations
Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. The following list outlines the coverage limitations of the engagement and
indicates system elements that may warrant further review:

● Models implementation correctness. We performed a best-effort review of the
models component that focused on verifying best development practices for
Python. There was not sufficient time to perform a detailed review of every model
component that the YOLO system has implemented. Ideally, with more time, these
implementations can be reviewed against their original specifications in academic
papers or other sources of documentation. Due to the amount of these components
in the system, the complexity of these components, and the lack of comprehensive

Trail of Bits 11 YOLO Security Assessment
PUBLIC

inline documentation, performing such a review in this engagement was not
possible.

● Utilities. Our review of the utilities component was a best-effort review that
targeted the most critical components identified during the threat modeling
exercise. The other areas of the utilities component, such as those handling logging
and plotting, would benefit from a more detailed code review.

Trail of Bits 12 YOLO Security Assessment
PUBLIC

Lightweight Threat Model

As part of the audit, Trail of Bits conducted a lightweight threat model of YOLOv7, drawing
from Mozilla's “Rapid Risk Assessment” methodology and the National Institute of
Standards and Technology’s (NIST) guidance on data-centric threat modeling (NIST
800-154). We began our assessment of the design of YOLOv7 by reviewing the various
YOLO academic papers and user documentation.

Data Types
● Inputs

○ YAML files (--data data/coco.yaml)
○ PT files - initial weights (--weights)
○ TXT files
○ Bash files
○ JSON
○ ZIP
○ Images ('bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo')
○ Videos ('mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv')
○ HTTP
○ HTTPS

■ Certificate files
○ rtsp/rtmp

● Outputs
○ TorchScript
○ CoreML
○ TorchScript-Lite
○ ONNX

Trail of Bits 13 YOLO Security Assessment
PUBLIC

https://infosec.mozilla.org/guidelines/risk/rapid_risk_assessment.html
https://csrc.nist.gov/publications/detail/sp/800-154/draft
https://csrc.nist.gov/publications/detail/sp/800-154/draft
https://github.com/WongKinYiu/yolov7/blob/84932d70fb9e2932d0a70e4a1f02a1d6dd1dd6ca/data/coco.yaml#L7-L9
https://github.com/WongKinYiu/yolov7/blob/84932d70fb9e2932d0a70e4a1f02a1d6dd1dd6ca/data/coco.yaml#L4-L4
https://github.com/WongKinYiu/yolov7/blob/84932d70fb9e2932d0a70e4a1f02a1d6dd1dd6ca/test.py#L254-L254
https://github.com/WongKinYiu/yolov7/blob/main/README.md#:~:text=download%20COCO%2Dannotations%20for%20Pycocotools
https://github.com/WongKinYiu/yolov7/blob/84932d70fb9e2932d0a70e4a1f02a1d6dd1dd6ca/utils/datasets.py#L35-L36
https://github.com/WongKinYiu/yolov7/blob/84932d70fb9e2932d0a70e4a1f02a1d6dd1dd6ca/utils/datasets.py#L36-L36
https://github.com/WongKinYiu/yolov7/blob/84932d70fb9e2932d0a70e4a1f02a1d6dd1dd6ca/deploy/triton-inference-server/client.py#L49-L49
https://github.com/WongKinYiu/yolov7/blob/84932d70fb9e2932d0a70e4a1f02a1d6dd1dd6ca/deploy/triton-inference-server/client.py#L80-L80
https://github.com/WongKinYiu/yolov7/blob/84932d70fb9e2932d0a70e4a1f02a1d6dd1dd6ca/deploy/triton-inference-server/client.py#L86-L104
https://github.com/WongKinYiu/yolov7/blob/84932d70fb9e2932d0a70e4a1f02a1d6dd1dd6ca/detect.py#L22-L22
https://github.com/WongKinYiu/yolov7/blob/84932d70fb9e2932d0a70e4a1f02a1d6dd1dd6ca/export.py#L75-L75
https://github.com/WongKinYiu/yolov7/blob/84932d70fb9e2932d0a70e4a1f02a1d6dd1dd6ca/export.py#L83-L83
https://github.com/WongKinYiu/yolov7/blob/84932d70fb9e2932d0a70e4a1f02a1d6dd1dd6ca/export.py#L105-L105
https://github.com/WongKinYiu/yolov7/blob/84932d70fb9e2932d0a70e4a1f02a1d6dd1dd6ca/export.py#L116-L116

Data Flow
The following diagram shows how data flows through the YOLO system, in the case in
which a YOLO model is trained on an external dataset and then deployed to an inference
server, where it receives novel inputs from the public Internet. Dotted areas indicate threat
zones; red bubbles indicate the positions of threat actors within the system.

Figure 1: The data flow in a typical YOLO training and deployment scenario

Trail of Bits 14 YOLO Security Assessment
PUBLIC

Components and Trust Zones
The following table describes each YOLO component identified for our analysis. It also
indicates whether the component or dependency is out of scope for the assessment. We
explored the implications of threats involving out-of-scope components that directly affect
in-scope components, but we did not consider threats to out-of-scope components
themselves.

Component Description

Internet The public Internet, accessible to anyone.

Static External Data
Source

A source of training, testing, or live data hosted on the public
internet that is assembled once and then re-hosted without
significant alteration (e.g., Microsoft COCO or specific YouTube
videos).

Dynamic External Data
Source

A source of training, testing, or live data hosted on the public
internet that is assembled dynamically from numerous third-party
sources or collected via live image/video capture (e.g., img2dataset
and webcams accessed over the Internet.)

Inference Client A client that communicates with the Inference Server to supply
inputs for classification.

Deployment Network The network in which the trained model is deployed.

Trained Model The primary output artifact of the YOLO Training System, a model
with its weights adjusted according to training data.

Inference Server The platform (e.g., Triton) on which the Trained Model runs,
receiving novel inputs to classify.

Training Network The network within which a model is trained.

Training Host The host on which the model is trained.

Data Storage The host on which the Dataset is stored.

Local Dataset A source of image or video data that is colocated with the model
host (e.g., a physical storage medium or a NAS on the model

Trail of Bits 15 YOLO Security Assessment
PUBLIC

network).

Shell Environment The shell environment in which the Yolo Scripts are launched.

Exporter A suite of scripts packaged with YOLO, used to transform raw trained
model output into a format usable by the inference server.

Local Processes* Other processes on the Model Host that communicate with the
YOLO system.

YOLO Training System The collection of scripts and configuration files used to train and test
a YOLO model. An instance of the YOLO system is present on the
Training Host, and thus resides within the Training Network.

YOLO Scripts The suite of scripts used to train and deploy YOLO models.

Model Config File
(model.yaml)

The model.yaml configuration files, supplied by the –cfg flag.

Initial Weights (.pt) File Initial weights file, .pt, supplied via –weights.

Resume Checkpoint File State file used to resume paused training, supplied via –resume.

Hyperparameters File Hyp.yaml, part of run settings, supplied via –hyp.

Data Manifest File Manifest for training data, supplied via –data.

Labels Cache File Cached image labels.

Third-Party
Dependencies*

A locally imported dependency retrieved from a third-party source
such as PyPi or a GitHub repository.

Trail of Bits 16 YOLO Security Assessment
PUBLIC

Trust Zone Connections
We can draw from our understanding of what data flows between trust zones and why to
enumerate attack scenarios.

Origin
Zone

Dest. Zone Data Description Connection
Type

Auth Type

Internet Internet Images are scraped from disparate
sources into a centralized dataset.

HTTP(S) None

Internet Model
Network

Datasets are downloaded to a
location accessible by the model
host in preparation for training.

Internet Model
Network,
YOLO
System

Third-party dependencies of the
YOLO system are retrieved and
installed onto the model host.

HTTPS None

Internet YOLO
System

Configuration files are downloaded
from the internet and loaded by
the YOLO scripts.

Model
Network

YOLO
System

Configuration files located on the
model host’s local filesystem, or
other hosts on the model network,
are loaded by the YOLO scripts.

Local
filesystem

Filesystem
permissions

Model
Network

Model
Network

A third party process such as
TensorBoard or WandB, running on
the model host or an adjacent host,
retrieves information generated by
YOLO scripts on the model host.

Local
filesystem;
local
sockets

Filesystem
permissions

Model
Network

YOLO
System

Environment variables on the
model host are loaded into YOLO’s
PyTorch execution environment.

POSIX APIs Local user
scope

YOLO
System

Model
Network

A model is generated via training
and deployed to a host.

Trail of Bits 17 YOLO Security Assessment
PUBLIC

Threat Actors
The following table describes actors who could be malicious, could be induced to
undertake an attack, or could be impacted by an attack. Defining these actors is helpful in
determining which protections, if any, are necessary to mitigate or remediate a
vulnerability.

Actor Description

End User A user who can submit live data to a deployed model.

Dependency Upstream The source(s) from which software dependencies are retrieved.

Data Upstream The source(s) from which image/video data are retrieved.

Network Insider An attacker with access to at least one host within the model
network (not necessarily the model host).

Local Attacker An attacker with local access to the model host.

Malicious Contributor An attacker with full or partial control over YOLO’s source code.

Trail of Bits 18 YOLO Security Assessment
PUBLIC

Threat Scenarios
The following table describes possible threat scenarios given the design, architecture, and
risk profile of the YOLO system.

Threat Scenario Actor(s) Component(s)

Dataset
Compromise

An attacker gains control of the
server hosting a dataset used by
YOLO (or performs a
Man-in-the-Middle attack between it
and the model network) and serves
a modified version of it.

● Data
Upstream

● Static External
Data Source

An attacker compromises local
storage for an already-downloaded
model or self-labeled data.

● Network
Insider

● Local Dataset

A domain scraped by img2dataset
expires and falls under an attacker’s
control, allowing the attacker to
poison a small portion of the
dataset.

● Data
Upstream

● Dynamic
External Data
Source

An attacker introduces malicious
code into a dependency used in the
pre-training image processing
pipeline, mutating the dataset.

● Dependency
Upstream or
Local
Attacker

● Local Dataset

An attacker conducts a Man-in-
the-Middle attack against an
insecure HTTP connection used to
download training data, mutating
the data in transit.

● Data
Upstream

● Static &
Dynamic
External Data
Sources

An attacker poisons the dataset
upstream, leading to mislabeled
data in the local dataset.

● Data
Upstream

● Static &
Dynamic
External Data

Trail of Bits 19 YOLO Security Assessment
PUBLIC

Sources

Host
Compromise

An attacker gains control of a
low-privileged process on the model
host, either by connecting to it from
another host on the model network,
or by compromising its upstream
externally.

● Network
Insider;
External
Attacker

● Model Host;
Local Process

An attacker with a foothold on the
training host injects shell
environment variables which are
loaded into PyTorch’s init process.

● Local
Attacker

● Model Host;
Local Process

An attacker sneaks malicious code
into the codebase of the YOLO
system or one of its dependencies,
gaining control of the host machine.

● Malicious
Contributor;
Dependency
Upstream

● YOLO Scripts;
Third Party
Dependencies

YOLO Process
Compromise

An attacker with local access to the
model host exploits a vulnerability
in the YOLO system (e.g., by
injecting executable code into a
configuration file).

● Local
Attacker

● Model Config
File; Shell
Environment

An attacker compromises a local
process such as WandB or
Tensorboard and writes to the
YOLO training scripts’ intermediate
state files, corrupting the model
weights.

● Local
Attacker

● Resume
Checkpoint;
Labels Cache

An attacker sneaks malicious code
into the codebase of the YOLO
system or one of its dependencies,
introducing behavior that adversely
affects the model’s predictions.

● Malicious
Contributor;
Dependency
Upstream

● YOLO Scripts;
Third Party
Dependencies

Trail of Bits 20 YOLO Security Assessment
PUBLIC

An attacker supplies a malformed
image or video file that exploits a
vulnerability when processed by the
YOLO Scripts or one of their
dependencies.

● Data
Upstream

● YOLO Scripts;
Third Party
Dependencies

Trail of Bits 21 YOLO Security Assessment
PUBLIC

Automated Testing

Trail of Bits uses automated techniques to extensively test the security properties of
software. We use open-source static analysis, along with tools developed in house, to
perform automated testing of source code and compiled software.

Test Harness Configuration
We used the following tools in the automated testing phase of this project:

Tool Description Policy

Semgrep An open-source static analysis tool for finding bugs and
enforcing code standards when editing or committing code
and during build time

Appendix D

CodeQL A code analysis engine developed by GitHub to automate
security checks

Appendix D

TorchScript
Automatic
Trace
Checker

A dynamic analysis tool included in PyTorch that
automatically finds potential errors in traced models

Appendix D

Trail of Bits 22 YOLO Security Assessment
PUBLIC

https://github.com/returntocorp/semgrep
https://codeql.github.com

Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic The codebase includes complicated arithmetic for
various models it provides. Unfortunately, the files that
implement this arithmetic are poorly documented,
untested, and the arithmetic mixes types between
integer, floating point, and various tensor types, which is
error prone. In addition, we identified an issue
(TOB-YOLO-9) related to potential division-by-zero errors
that would halt the execution of the triton inference
server.

Weak

Auditing Many locations use logging with helpful descriptions to
track errors. However, more areas of the codebase
should be designed defensively, with better input
validation and sanitization and corresponding auditing
for when issues are identified.

Satisfactory

Authentication /
Access Controls

This category is largely unconsidered, since many of the
components of YOLOv7 do not require access controls.
However, YOLOv7 relies on data and model files that are
potentially downloaded from outside sources, and little
authentication or verification is performed on these
external data sources.

Moderate

Complexity
Management

Many functions in the codebase are separated with a
clear purpose. However, the most complex portion of the
codebase, which implements different components of
the model architecture (such as neural net layers), is
poorly documented and contains large, complex
functions that could be divided into multiple functions.

Moderate

Configuration This category is largely unconsidered, but the codebase is
not configured to enforce HTTPS connections everywhere

Moderate

Trail of Bits 23 YOLO Security Assessment
PUBLIC

(TOB-YOLO-6), and malicious configuration files could
result in arbitrary code execution (TOB-YOLO-3).

Cryptography
and Key
Management

This category is largely unconsidered, but HTTPS
connections are not enforced everywhere (TOB-YOLO-6).

Moderate

Data Handling The codebase performs very little input validation and
sanitization, even for data that could be pulled from
external sources. This lack of input validation could result
in denial of service (TOB-YOLO-9). In addition, the
codebase relies on insecure pickle files that could also be
obtained from external sources (TOB-YOLO-2).

Weak

Documentation In addition to multiple academic papers describing the
YOLO models and their architectures, YOLO also has a
comprehensive set of user documentation. Furthermore,
the codebase contains docstrings and inline
documentation in many locations; however, multiple
functions are missing docstrings, and some locations of
the codebase have limited inline comments. In particular,
the models component of the codebase would benefit
the most from additional inline documentation.

Satisfactory

Maintenance The codebase does not have any mechanisms to protect
itself from regressions during the development process,
such as code scanning, testing, or even contribution
guidelines. Since the system does not use any unit tests,
we expect bugs to exist in the codebase as well.

Weak

Memory Safety
and Error
Handling

Since the codebase is mostly Python, memory safety is
largely unconsidered. Many locations in the codebase
catch errors or raise exceptions and report the issues
with clear logging. However, some areas could improve
error handling, especially components accepting data
from potentially external sources (TOB-YOLO-9).

Moderate

Testing and
Verification

Aside from testing the full model with a test dataset, the
codebase is missing a test suite altogether. The codebase
would greatly benefit from a comprehensive set of unit
tests covering both the happy and sad paths, which
would have prevented multiple issues in the codebase. In
addition, the codebase would benefit from integration

Missing

Trail of Bits 24 YOLO Security Assessment
PUBLIC

testing of the interactions of different models and
components, especially for the parts of the codebase that
accept outside input, such as model files and data
sources.

Trail of Bits 25 YOLO Security Assessment
PUBLIC

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Multiple uses of subprocess.check_output with
shell=True could allow command injection

Data Validation High

2 Models are stored and loaded as pickle files
throughout the YOLO codebase

Data Validation High

3 Parsing of YAML config file can lead to arbitrary
code execution

Data Validation High

4 Untrusted pre-trained models can lead to
arbitrary code execution

Data Validation High

5 Multiple uses of os.system could allow command
injection

Data Validation High

6 Use of unencrypted HTTP protocol Cryptography Low

7 Insecure origin check Data Validation Low

8 The check_dataset function downloads and unzips
files from arbitrary URLs

Denial of Service Low

9 Insufficient input validation in triton inference
server could result in uncaught exception at
runtime

Denial of Service Medium

10 Improper use of TorchScript tracing leads to
model differentials

Data Validation Medium

11 Project lacks adequate testing framework Testing Informational

Trail of Bits 26 YOLO Security Assessment
PUBLIC

12 Flaw in detect.py will cause runtime exceptions to
occur when using a traced model

Denial of Service Low

Trail of Bits 27 YOLO Security Assessment
PUBLIC

Detailed Findings

1. Multiple uses of subprocess.check_output with shell=True could allow
command injection

Severity: High Difficulty: High

Type: Data Validation Finding ID: TOB-YOLO-1

Target: utils/torch_utils.py, utils/general.py,utils/google_utils

Description
Various parts of the codebase rely on various shell commands to obtain relevant
information for the user. For instance, as shown in figure 1.1, the git_describe function
uses subprocess.check_output to run a git command. Functions such as
subprocess.check_output are permissive functions that allow arbitrary commands to
be run; as a result, it is important that these functions are used carefully to prevent
command injection attacks, where an attacker crafts malicious input that results in
subprocess.check_output running a malicious command.

54 def git_describe(path=Path(__file__).parent): # path must be a directory
55 # return human-readable git description, i.e. v5.0-5-g3e25f1e
https://git-scm.com/docs/git-describe
56 s = f'git -C {path} describe --tags --long --always'
57 try:
58 return subprocess.check_output(s, shell=True,
stderr=subprocess.STDOUT).decode()[:-1]
59 except subprocess.CalledProcessError as e:
60 return '' # not a git repository

Figure 1.1: Snippet of git_describe in utils/torch_utils.py

72 def check_git_status():
73 # Recommend 'git pull' if code is out of date
74 print(colorstr('github: '), end='')
75 try:
76 assert Path('.git').exists(), 'skipping check (not a git repository)'
77 assert not isdocker(), 'skipping check (Docker image)'
78 assert check_online(), 'skipping check (offline)'
79
80 cmd = 'git fetch && git config --get remote.origin.url'
81 url = subprocess.check_output(cmd,
shell=True).decode().strip().rstrip('.git') # github repo url
82 branch = subprocess.check_output('git rev-parse --abbrev-ref HEAD',

Trail of Bits 28 YOLO Security Assessment
PUBLIC

https://github.com/WongKinYiu/yolov7/blob/84932d70fb9e2932d0a70e4a1f02a1d6dd1dd6ca/utils/torch_utils.py#L54-L60

shell=True).decode().strip() # checked out
83 n = int(subprocess.check_output(f'git rev-list {branch}..origin/master
--count', shell=True)) # commits behind
84 if n > 0:
85 s = f"⚠ WARNING: code is out of date by {n} commit{'s' * (n >
1)}. " \
86 f"Use 'git pull' to update or 'git clone {url}' to download
latest."
87 else:
88 s = f'up to date with {url} ✅'
89 print(emojis(s)) # emoji-safe
90 except Exception as e:
91 print(e)

Figure 1.2: Snippet of check_git_status in utils/general.py

It is recommended that functions like subprocess.check_output and subprocess.run
are called with the input command parameterized in an array (rather than as a single
string) and with shell=False (the default). The reason for this is that when shell=False,
these subprocess functions will execute only if each element in the parameterized input
array does not contain whitespace. This will prevent any sort of command injection attack,
even when the attack can control some of the values in the parameterized input. However,
as shown in figures 1.1 and 1.2, multiple locations in the YOLOv7 codebase call
subprocess.check_output with a single string for the command and shell=True.

Here are all the instances of subprocess.check_output being called with shell=True:

● utils/general.py lines 81, 82, 83, and 114
● utils/google_utils.py lines 15 and 31
● utils/torch_utils.py line 58

Exploit Scenario
An attacker crafts a malicious command that they would like to inject into an instance of
subprocess.check_output. This attacker forces their target victim to use a directory
path or a git branch that contains this malicious command as a substring, which allows
them to inject a command into subprocess.check_output in either figure 1.1 or figure
1.2.

Recommendations
Short term, call subprocess.check_output with shell=False in all instances. Also, use
a parameterized input array rather than constructing a single string for the command being
called.

Long term, review all instances of subprocess, eval, os.system, and any other
permissive functions to ensure they are being used safely. In addition, consider replacing
these instances with safer internal Python API calls. For instance, consider using GitPython
rather than using subprocess.check_output to obtain git information.

Trail of Bits 29 YOLO Security Assessment
PUBLIC

https://github.com/WongKinYiu/yolov7/blob/84932d70fb9e2932d0a70e4a1f02a1d6dd1dd6ca/utils/general.py#L72-L91
https://github.com/gitpython-developers/GitPython

2. Models are stored and loaded as pickle files throughout the YOLO codebase

Severity: High Difficulty: High

Type: Data Validation Finding ID: TOB-YOLO-2

Target: detect.py, hubconf.py, train.py, train_aux.py,
utils/aws/resume.py, utils/datasets.py, utils/general.py

Description
Throughout the YOLOv7 codebase, models are serialized and loaded using functions such
as torch.load and torch.save, which rely on pickle files. Pickle files have become
prevalent in the machine learning space for serializing models because their flexibility
makes it possible to serialize several kinds of models without much effort. However, pickle
files are known to be insecure, as they allow the execution of arbitrary code. If any of these
pickle files are obtained from an untrusted source, an attacker could inject malicious code
into the pickle file, which would run on the victim's machine.

Figure 1.1 shows one of several locations that rely on torch.load to load models. This
instance is particularly risky because the model can potentially be downloaded from an
external source using the attempt_download function. If an attacker is able to
compromise the site that hosts these models, they would obtain a vector for remote code
execution.

def create(name, pretrained, channels, classes, autoshape):
"""Creates a specified model

Arguments:
name (str): name of model, i.e. 'yolov7'
pretrained (bool): load pretrained weights into the model
channels (int): number of input channels
classes (int): number of model classes

Returns:
pytorch model

"""
try:

cfg = list((Path(__file__).parent / 'cfg').rglob(f'{name}.yaml'))[0] #
model.yaml path

model = Model(cfg, channels, classes)
if pretrained:

fname = f'{name}.pt' # checkpoint filename
attempt_download(fname) # download if not found locally

Trail of Bits 30 YOLO Security Assessment
PUBLIC

ckpt = torch.load(fname, map_location=torch.device('cpu')) # load

Figure 2.1: snippet of create in hubconf.py

We consider this issue to have high difficulty because, in order to exploit it, an attacker
must be able to serve a malicious pickle file to a target victim. It is possible that if an
attacker is able to serve these malicious files, then they likely have the ability to perform
other attacks directly, although this may not always be possible. Moreover, malicious pickle
files are much more difficult to detect without proper inspection, as it is possible for these
files to execute malicious code and still correctly load the model files.

Exploit Scenario
An attacker serves a malicious pickle file that exfiltrates all of the victim’s credentials and
sends them to a server controlled by the attacker. The attacker carefully crafts the pickle
file so that after the credentials have been exfiltrated, the YOLO model still loads correctly,
and the victim does not detect anything malicious.

Recommendations
Short term, when loading PyTorch models, use the weights_only unpickler and
load_state_dict(); consider using fickling to detect possible malicious pickle files
before loading them.

Long term, use a safer serialization format, such as safetensors or ONNX, which allows for
the serialization of complex models without allowing for the execution of arbitrary code.

References
● Never a dill moment: Exploiting machine learning pickle files

Trail of Bits 31 YOLO Security Assessment
PUBLIC

https://github.com/WongKinYiu/yolov7/blob/main/hubconf.py#L22-L40
https://pytorch.org/docs/stable/generated/torch.load.html
https://pytorch.org/docs/stable/generated/torch.load.html
https://github.com/trailofbits/fickling
https://blog.trailofbits.com/2021/03/15/never-a-dill-moment-exploiting-machine-learning-pickle-files/

3. Parsing of YAML config file can lead to arbitrary code execution

Severity: High Difficulty: High

Type: Data Validation Finding ID: TOB-YOLO-3

Target: train.py

Description
When initiating a Model class in train.py, it can take a YAML as a configuration file for the
backbone of a model architecture. The configuration file is parsed by the parse_model
function in models/yolo.py. The function uses an eval function on lines in the
configuration file, as shown in figure 3.1.

742 layers, save, c2 = [], [], ch[-1]
743 for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):
744 m = eval(m) if isinstance(m, str) else m
745 for j, a in enumerate(args):
746 try:

Figure 3.1: Snippet of parse_model in models/yolo.py

The eval function allows execution of arbitrary expressions from a string. Without proper
validation of inputs, an attacker could inject malicious code to execute on a victim’s
machine. In model.py, the function checks only if the current instance is a string and
inputs it to eval without any proper validation.

Exploit Scenario
An adversary replaces a list of numbers with a list of a single, malicious string in the
backbone section of the configuration file while keeping the rest of the configuration file
the same, as shown in figure 3.2.

13 backbone:
14 [[-1, 1, Conv, ["__import__('os').system('/bin/sh')"]],
15 [-1, 1, Conv, [64, 3, 2]],
16 [-1, 1, Bottleneck, [64]],
17 [-1, 1, Bottleneck, [64]],

Figure 3.2: Snippet of a malicious configuration YAML file

When given this configuration file, the parse_model function evaluates the string as code
and executes it. In this example, os.system was used to open a shell. When the user trains
their data in train.py, they load this YAML file using the cfg flag in the command line.

Trail of Bits 32 YOLO Security Assessment
PUBLIC

https://github.com/WongKinYiu/yolov7/blob/main/models/yolo.py#L744

Unset

python3 train.py --workers 8 --device 0 --batch-size 32 --data data/coco.yaml
--img 640 640 --cfg cfg/baseline/yolov7-malicious.yaml --weights '' --name
yolov7 --hyp data/hyp.scratch.p5.yaml

Recommendations
Short term, remove the usage of eval entirely and instead either construct the objects
explicitly or use a modeling library such as Pydantic.

Long term, review all instances of subprocess, eval, os.system, and any other
permissive functions to ensure they are being used safely. In addition, consider replacing
these instances with safer internal Python API calls, such as those described in the short
term recommendation.

Trail of Bits 33 YOLO Security Assessment
PUBLIC

https://github.com/pydantic/pydantic

Unset

4. Untrusted pre-trained models can lead to arbitrary code execution

Severity: High Difficulty: High

Type: Data Validation Finding ID: TOB-YOLO-4

Target: train.py

Description
The same vulnerability mentioned in finding TOB-YOLO-3 can be exploited using a
pretrained model. In train.py, the user is allowed to provide a configuration YAML file as
architecture backbone or a *.pt file as a pretrained model.

88 model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, \
anchors=hyp.get('anchors')).to(device)

Figure 4.1: Creating a model class using the pretrained file

The pretrained model can have an attribute called yaml, which is similar to the YAML used
for the model architecture except that it is a Python dictionary. Since the parsing is the
same, the vulnerability is still present, and the eval function can be exploited by crafting a
malicious pretrained file.

Exploit Scenario
The attacker writes their own Model class with an attribute called yaml that is a dictionary
with the same properties as a YAML file used as a configuration file. The victim user creates
an instance of that class and stores it in a dictionary with the string 'model' as a key and
the object as its value. The victim user then saves the dictionary as a *.pt file using
PyTorch, which creates a malicious pretrained file. The victim user then loads the
pretrained file in the command line using the weights flag.

python3 train.py --workers 8 --device 0 --batch-size 32 --data
data/coco.yaml --img 640 640 --weights 'maliciousyolov7.pt'
--name yolov7 --hyp data/hyp.scratch.p5.yaml

This exploit is difficult to detect due to the serialization of the object.

Trail of Bits 34 YOLO Security Assessment
PUBLIC

Recommendations
Short term, support only pretrained weights from the GitHub repo with a checksum to
ensure the downloaded pretrained file is not malicious.

Long term, use a safer serialization format, such as safetensors or ONNX, which allows for
the serialization of complex models without allowing for the execution of arbitrary code.

Trail of Bits 35 YOLO Security Assessment
PUBLIC

5. Multiple uses of os.system could allow command injection

Severity: High Difficulty: High

Type: Data Validation Finding ID: TOB-YOLO-5

Target: train.py, train_aux.py, test.py, utils/general.py,
utils/google_utils.py

Description
The codebase uses Python’s os.system to invoke certain commands. These are
susceptible to malicious command injections.

Certain commands, such as gsutil, unzip and curl, are executed as shell commands via
Python’s os.system. An example can be found in the train.py script.

if opt.bucket:
os.system(f'gsutil cp {final} gs://{opt.bucket}/weights') # upload

Figure 5.1: Use of os.system in the train function in train.py

This particular use of os.system is vulnerable to command injection. By including the
command line argument --bucket ";whoami", we can invoke arbitrary commands as the
current user.

The full command to be executed might look like this:

python train.py --bucket ";whoami" --data data/coco.yaml --img 640 640 --cfg
cfg/training/yolov7.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml
--epochs 1

Figure 5.2: Example command line injection for train.py

Another problematic instance of os.system is in the check_dataset function:

def check_dataset(dict):
Download dataset if not found locally
val, s = dict.get('val'), dict.get('download')
if val and len(val):

val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])]
val path

if not all(x.exists() for x in val):
print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x)

for x in val if not x.exists()])
if s and len(s): # download script

Trail of Bits 36 YOLO Security Assessment
PUBLIC

print('Downloading %s ...' % s)
if s.startswith('http') and s.endswith('.zip'): # URL

f = Path(s).name # filename
torch.hub.download_url_to_file(s, f)
r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip

else: # bash script
r = os.system(s)

print('Dataset autodownload %s\n' % ('success' if r == 0 else
'failure')) # analyze return value

else:
raise Exception('Dataset not found.')

Figure 5.3: Use of os.system in the check_dataset function in utils/general.py

As highlighted in figure 5.3, the check_dataset function takes in a dictionary, which
contains a download script s. If s is not a URL containing the substring `http` and `zip`,
then check_dataset will execute an arbitrary command by calling os.system(s). This is
particularly problematic because this function is called in both train.py and test.py
with the dictionary value obtained from a YAML file specified by the user. If an attacker was
able to compromise such a YAML file, this would introduce an arbitrary code execution
vulnerability.

Throughout the repository, there are many uses of os.system, many of which (but not all)
are susceptible in the same way:

● test.py#L352
● train_aux.py#L430
● train_aux.py#L512
● train_aux.py#L656
● train.py#L433
● train.py#L515
● train.py#L662
● utils/general.py#L168
● utils/general.py#L170
● utils/general.py#L826
● utils/general.py#L844
● utils/google_utils.py#L47
● utils/google_utils.py#L67
● utils/google_utils.py#L72
● utils/google_utils.py#L84
● utils/plots.py#L410
● utils/aws/resume.py#L37

Exploit Scenario
The YOLOv7 repository is deployed as a cloud service for paying customers. Eve, a
malicious user, spots the vulnerability and injects a command that starts a remote shell

Trail of Bits 37 YOLO Security Assessment
PUBLIC

execution environment that she can access from her computer. She is now in control of the
servers.

Recommendations
Short term, be vigilant when handling user-provided inputs. Heavily limit or sanitize these
in order to reduce the expressivity of inputs. Extra care should be given to strings or inputs
of arbitrary length, especially when these are being used in combination with commands
that are able to execute arbitrary commands.

Long term, review all instances of subprocess, eval, os.system, and any other
permissive functions to ensure they are being used safely. In addition, consider replacing
these instances with safer internal Python API calls.

Trail of Bits 38 YOLO Security Assessment
PUBLIC

6. Use of unencrypted HTTP protocol

Severity: Low Difficulty: High

Type: Cryptography Finding ID: TOB-YOLO-6

Target: README.md

Description
YOLOv7 uses the unencrypted HTTP protocol in the documentation to download MS COCO
dataset images (figure 6.1), which could allow an attacker to intercept and modify both the
request and response of a victim user in the same network. The attacker could then
manipulate the training set.

83 ## Training
84
85 Data preparation
86
87 ``` shell
88 bash scripts/get_coco.sh
89 ```
90
91 * Download MS COCO dataset images
([train](http://images.cocodataset.org/zips/train2017.zip),
[val](http://images.cocodataset.org/zips/val2017.zip),
[test](http://images.cocodataset.org/zips/test2017.zip))

Figure 6.1: Part of the YOLOv7 documentation that uses HTTP protocol to download dataset
images (yolov7/README.md#83–91)

Exploit Scenario
Eve gains access to Alice’s network and modifies Alice’s downloaded training data to obtain
specific recognizing behavior of YOLOv7.

Recommendations
Short term, enforce the use of the HTTPS URL scheme in the YOLOv7 documentation.

Long term, review any YOLOv7 code that contains external links and ensure that those links
do not use the HTTP protocol.

Trail of Bits 39 YOLO Security Assessment
PUBLIC

https://github.com/WongKinYiu/yolov7/blob/3b41c2cc709628a8c1966931e696b14c11d6db0c/README.md?plain=1#L83-L91

7. Insecure origin check

Severity: Low Difficulty: High

Type: Data Validation Finding ID: TOB-YOLO-7

Target: utils/datasets.py#285

Description
YOLOv7 insecurely checks the origin of the URLs (figure 7.1) by checking for youtube.com/
or youtu.be/ anywhere in the URL string. This validation can be bypassed by using any
domain and the youtube.com/ or youtu.be/ strings as a parameter.

285 if 'youtube.com/' in str(url) or 'youtu.be/' in str(url): # if source is
YouTube video

Figure 7.1: Insecure origin check implementation (yolov7/utils/datasets.py#285)

We have rated this issue as low severity because it affects the model only during detection.
This issue would be more severe if this occurred during training, as this could allow an
attacker to poison the training data and perform a backdoor attack or generally degrade
the model’s performance.

Exploit Scenario
Eve creates a malicious website, evil.com, and crafts a URL that passes the application's
origin check, such as evil.com/whatever?evilparam=youtube.com/. Eve then tricks
Alice into using the deceptive link. Alice, who is unaware of the malicious link, downloads a
tainted video, and her YOLO model performs very poorly. Alice then loses valuable time
attempting to debug her model before realizing the issue was with her video.

Recommendations
Short term, ensure that youtube.com or youtu.be strings are present in the main domain
section of the URL. Be aware of deceptive subdomain usage, as allowed strings can be used
as subdomains (e.g., youtube.com.evil.com).

Long term, incorporate CodeQL into your development process to avoid incomplete URL
substring sanitization.

Trail of Bits 40 YOLO Security Assessment
PUBLIC

https://github.com/WongKinYiu/yolov7/blob/84932d70fb9e2932d0a70e4a1f02a1d6dd1dd6ca/utils/datasets.py#L285-L285
https://codeql.github.com/codeql-query-help/python/py-incomplete-url-substring-sanitization/
https://codeql.github.com/codeql-query-help/python/py-incomplete-url-substring-sanitization/

8. The check_dataset function downloads and unzips files from arbitrary
URLs

Severity: Low Difficulty: High

Type: Denial of Service Finding ID: TOB-YOLO-8

Target: test.py, train_aux.py, train.py

Description
The check_dataset function is used throughout the codebase to see if a dataset exists at
a particular directory path; if the dataset does not exist, then the check_dataset function
attempts to download the dataset by either downloading a zip file or running a bash script
specified in the input.

156 def check_dataset(dict):
157 # Download dataset if not found locally
158 val, s = dict.get('val'), dict.get('download')
159 if val and len(val):
160 val = [Path(x).resolve() for x in (val if isinstance(val, list) else
[val])] # val path
161 if not all(x.exists() for x in val):
162 print('\nWARNING: Dataset not found, nonexistent paths: %s' %
[str(x) for x in val if not x.exists()])
163 if s and len(s): # download script
164 print('Downloading %s ...' % s)
165 if s.startswith('http') and s.endswith('.zip'): # URL
166 f = Path(s).name # filename
167 torch.hub.download_url_to_file(s, f)
168 r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) #
unzip
169 else: # bash script
170 r = os.system(s)
171 print('Dataset autodownload %s\n' % ('success' if r == 0
else 'failure')) # analyze return value
172 else:
173 raise Exception('Dataset not found.')

Figure 8.1: check_dataset function downloads and unzips from arbitrary URLs

This could be highly problematic in some instances. For example, in the test.py file, this
function is called on the data variable that is obtained from reading a YAML file that is
specified via a command line argument. If this YAML file is corrupted, an attacker could
inject a URL that will result in the target user unzipping a zip bomb that halts execution of
the model.

Trail of Bits 41 YOLO Security Assessment
PUBLIC

Exploit Scenario
A malicious actor corrupts the dataset YAML file being used by a target user during training
and injects a malicious download URL. The target user does not inspect their YAML files
closely and unknowingly downloads and unzips a zip bomb that halts execution of their
model.

Recommendations
Short term, validate the zip file before unzipping to prevent a zip bomb attack. For
example, check the size of the file and do not unzip it if it is too large.

Long term, limit which URLs users can download files from or carefully verify that
downloaded files can be trusted before unzipping them.

Trail of Bits 42 YOLO Security Assessment
PUBLIC

9. Insu�cient input validation in triton inference server could result in
uncaught exception at runtime

Severity: Medium Difficulty: High

Type: Denial of Service Finding ID: TOB-YOLO-9

Target: deploy/triton-inference-server

Description
The triton inference server is an open source software that streamlines AI inference. The
triton inference server component of the YOLOv7 codebase includes logic for deploying
YOLOv7 to the triton inference server. The client.py file implements a command line
interface for interacting with YOLO models deployed on triton; for example, using this
command line interface, users can pass in images and videos to be evaluated.

Despite this command line interface accepting images and videos from potentially external,
untrusted sources, very limited input validation is performed on these inputs. As a result,
several crafted inputs could cause execution to halt due to uncaught exceptions or other
errors. One such example is shown in figure 9.1, where both the preprocess and
postprocess functions (both of which are called in client.py) have multiple locations
where a division-by-zero error could occur.

6 def preprocess(img, input_shape, letter_box=True):
7 if letter_box:
8 img_h, img_w, _ = img.shape
9 new_h, new_w = input_shape[0], input_shape[1]
10 offset_h, offset_w = 0, 0
11 if (new_w / img_w) <= (new_h / img_h):
12 new_h = int(img_h * new_w / img_w)
13 offset_h = (input_shape[0] - new_h) // 2
14 else:
15 new_w = int(img_w * new_h / img_h)
16 offset_w = (input_shape[1] - new_w) // 2
17 resized = cv2.resize(img, (new_w, new_h))
18 img = np.full((input_shape[0], input_shape[1], 3), 127,
dtype=np.uint8)
19 img[offset_h:(offset_h + new_h), offset_w:(offset_w + new_w), :] =
resized
20 else:
21 img = cv2.resize(img, (input_shape[1], input_shape[0]))
22
23 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
24 img = img.transpose((2, 0, 1)).astype(np.float32)
25 img /= 255.0

Trail of Bits 43 YOLO Security Assessment
PUBLIC

26 return img
27
28 def postprocess(num_dets, det_boxes, det_scores, det_classes, img_w, img_h,
input_shape, letter_box=True):
29 boxes = det_boxes[0, :num_dets[0][0]] / np.array([input_shape[0],
input_shape[1], input_shape[0], input_shape[1]], dtype=np.float32)
30 scores = det_scores[0, :num_dets[0][0]]
31 classes = det_classes[0, :num_dets[0][0]].astype(np.int)
32
33 old_h, old_w = img_h, img_w
34 offset_h, offset_w = 0, 0
35 if letter_box:
36 if (img_w / input_shape[1]) >= (img_h / input_shape[0]):
37 old_h = int(input_shape[0] * img_w / input_shape[1])
38 offset_h = (old_h - img_h) // 2
39 else:
40 old_w = int(input_shape[1] * img_h / input_shape[0])
41 offset_w = (old_w - img_w) // 2
42
43 boxes = boxes * np.array([old_w, old_h, old_w, old_h], dtype=np.float32)
44 if letter_box:
45 boxes -= np.array([offset_w, offset_h, offset_w, offset_h],
dtype=np.float32)
46 boxes = boxes.astype(np.int)
47
48 detected_objects = []
49 for box, score, label in zip(boxes, scores, classes):
50 detected_objects.append(BoundingBox(label, score, box[0], box[2],
box[1], box[3], img_w, img_h))
51 return detected_objects

Figure 9.1: preprocess and postprocess functions do not validate inputs and could trigger
division-by-zero errors.

A comprehensive suite of unit tests, covering both the happy and sad codepaths, could
help to identify and resolve issues like this. Without any existing unit tests in the triton
inference code, it is likely that other crafted input values could result in halting the
execution of the inference, or potentially even more severe results.

Exploit Scenario
A malicious actor targets a system using YOLOv7 deployed on triton in which high
availability is essential, such as an autonomous vehicle system. An attacker discovers these
implementation flaws and causes execution to halt by passing in malformed images, which
will result in a division-by-zero error occurring during either pre-processing or
post-processing. The system experiences a denial of service.

Recommendations
Short term, update preprocess, postprocess, and client.py to properly handle inputs
that currently cause a division-by-zero error to occur.

Trail of Bits 44 YOLO Security Assessment
PUBLIC

Long term, implement a comprehensive suite of unit tests to cover both the happy and sad
paths of critical components. In addition, consider incorporating static analysis tools like
Semgrep and CodeQL into your development process.

Trail of Bits 45 YOLO Security Assessment
PUBLIC

10. Improper use of TorchScript tracing leads to model di�erentials

Severity: Medium Difficulty: High

Type: Data Validation Finding ID: TOB-YOLO-10

Target: utils/torch_utils.py, detect.py, test.py, export.py

Description
To facilitate deployment, Pytorch offers torch.jit.trace to convert models into the
TorchScript format. However, as shown in table 10.1, there are many known cases in which
tracing does not lead to an accurate representation.

Tracer Edge Cases Example

Input-dependent control flow (including
mutable container types and in-place
operations)

Lines 34,35,37,40,and 51 of
models/yolo.py

Certain tensor operations from external
libraries and implicit type conversions with
tensors

Lines 50-59 of
models/experimental.py

Table 10.1: Edge cases in which tracing does not produce accurate representation

These cases are present in the defined YOLOv7 models that are currently being traced .
This means that the deployed model is different from the original model, yielding different
results.

In addition, in this codebase, tracing is performed after the model is serialized to a PyTorch
file and then deserialized. This practice, in conjunction with the non-standard structure of
the model architecture code, results in the loss of information that analyzes the veracity of
training, such as tracer warnings indicating the presence of edge cases.

362 traced_script_module = torch.jit.trace(self.model, rand_example,
strict=False)

Figure 10.1: Improper use of TorchScript tracing (yolov7/utils/torch_utils.py#362)

This use of tracing could introduce differentials that enable the creation of backdoors. For
instance, an attacker could craft a malicious model that behaves differently when deployed.

Trail of Bits 46 YOLO Security Assessment
PUBLIC

https://github.com/WongKinYiu/yolov7/blob/main/utils/torch_utils.py#L362

Specifically, this attacker could introduce a backdoor of custom logic that executes only on
deployed models.

Exploit Scenario
An attacker trains a model that exhibits a specific, potentially malicious behavior when
deployed that is not present otherwise. Specifically, the attacker creates a model that has
special behavior for specific input images. Since this behavior is present only for specific
images and only during deployment, detecting this backdoored behavior is difficult.

Recommendations
Short-term, mix both tracing and scripting of the model to ensure that all tracing edge
cases are avoided. It would also be useful to minimize edge cases, especially those
indicated by tracer warnings, to reduce the possibility of differentials. The integrity and
effectiveness of tracing should also be tested before serialization by using the automatic
trace checker.

Long-term, use torch.compile instead of tracing and scripting, as it minimizes the
presence of differentials.

Trail of Bits 47 YOLO Security Assessment
PUBLIC

11. Project lacks adequate testing framework

Severity: Informational Difficulty: High

Type: Testing Finding ID: TOB-YOLO-11

Target: YOLOv7

Description
Currently, the YOLOv7 codebase does not contain any form of testing framework. The only
testing of the codebase is performed on the model itself via the typical training and testing
that is performed on machine learning models. Notably, there are no other units or
integration tests in the codebase.

Unit tests help expose errors and help provide additional documentation or understanding
of the codebase to readers. Moreover, they exercise code in a more systematic way than
any human can. A strong suite of unit tests is essential to protect against codebase
regressions. A stronger testing suite could have prevented the occurrence of multiple
issues in this report, such as TOB-YOLO–9, and there are likely other issues in the codebase
that could be uncovered by a stronger test suite.

At a minimum, unit tests covering both the happy and sad paths should be added for all
critical functions, especially those that accept input from potentially external sources.
Ideally, this test suite could be extended to include the entire codebase and also include
integration tests that test the interaction between multiple components (again, especially if
these components interact with external input).

Exploit Scenario
A security-critical system relies on YOLOv7 for real-time object detection. A malicious actor
closely monitors the system and the YOLOv7 codebase. Due to a lack of a testing
framework that prevents code regressions, an old, critical flaw is reintroduced into the
codebase in a recent commit to the YOLOv7 codebase. The malicious actor identifies this
flaw and exploits the security-critical system using this vulnerability.

Recommendations
Long term, implement a comprehensive suite of unit tests to cover both the happy and sad
paths of critical components. In addition, consider incorporating static analysis tools like
Semgrep and CodeQL into your development process.

Trail of Bits 48 YOLO Security Assessment
PUBLIC

12. Flaw in detect.py will cause runtime exceptions to occur when using a
traced model

Severity: Low Difficulty: Low

Type: Denial of Service Finding ID: TOB-YOLO-12

Target: detect.py

Description
The detect.py file provides command-line arguments for using the trained YOLO models.
These command-line arguments include --img-size and --no-trace. The former
argument controls the size of the image being sent to the model, and the latter controls
whether or not a traced model is used. The function check_img_size() updates the size
of the image (if it is invalid) using the variable imgz. However, when the model is traced,
the original input size is passed to the model instead of the updated size. This results in a
runtime error when an invalid image size is passed when the model is traced that is not
present otherwise.

34 model = attempt_load(weights, map_location=device) # load FP32 model
35 stride = int(model.stride.max()) # model stride
36 imgsz = check_img_size(imgsz, s=stride) # check img_size
37 if trace:
38 model = TracedModel(model, device, opt.img_size)

Figure 12.1: Potential runtime exception in detect.py#L38

Exploit Scenario
A malicious actor targets a system using YOLO in which high availability is essential, such as
an autonomous vehicle system. An attacker discovers that this implementation flaw exists
in the version of YOLO being run in the system and causes the target system to attempt to
trace a model with invalid image size. Due to this implementation flaw, execution halts and
the system experiences a denial of service.

Recommendations
Short term, adjust detect.py to resolve this implementation flaw and allow tracing to
occur with the proper image size.

Long term, implement a comprehensive suite of unit tests to cover both the happy and sad
paths of critical components. In addition, consider incorporating static analysis tools like
Semgrep and CodeQL into your development process.

Trail of Bits 49 YOLO Security Assessment
PUBLIC

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 50 YOLO Security Assessment
PUBLIC

Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 51 YOLO Security Assessment
PUBLIC

B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category Description

Arithmetic The proper use of mathematical operations and semantics

Auditing The use of event auditing and logging to support monitoring

Authentication /
Access Controls

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

Complexity
Management

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

Configuration The configuration of system components in accordance with best
practices

Cryptography and
Key Management

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

Data Handling The safe handling of user inputs and data processed by the system

Documentation The presence of comprehensive and readable codebase documentation

Maintenance The timely maintenance of system components to mitigate risk

Memory Safety
and Error Handling

The presence of memory safety and robust error-handling mechanisms

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.

Satisfactory Minor issues were found, but the system is compliant with best practices.

Moderate Some issues that may affect system safety were found.

Trail of Bits 52 YOLO Security Assessment
PUBLIC

Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further
Investigation
Required

Further investigation is required to reach a meaningful conclusion.

Trail of Bits 53 YOLO Security Assessment
PUBLIC

C. Code Quality Recommendations

The following findings and recommendations are not associated with specific
vulnerabilities. However, they enhance code readability or performance and may prevent
the introduction of vulnerabilities in the future. These were found using a combination of
manual and automated code review.

● Various parts of the codebase use NumPy arrays inside of PyTorch modules. It
is considered best practice to avoid using NumPy inside of PyTorch because it is
more efficient to use the PyTorch equivalent operations. In addition, this can cause
issues with tracing, exporting, and distributed training. NumPy is used in the
model/common.py file on lines 538, 902, 904, 917, 1122, and 1331.

● Several functions and classes are missing docstrings. Docstrings enhance code
readability and help prevent the introduction of logic bugs. Run CodeQL against the
codebase, review all locations that are missing docstrings, and add docstrings to all
critical functions and classes.

● Several files have unused imports and use import *. It is considered best
practice to only import modules that are being used and to avoid using import *
for efficiency and to avoid pollution of the namespace. Run CodeQL against the
codebase and review all instances of unused imports and import *.

● Several files contain commented-out code. It is considered best practice to
remove commented-out code that is no longer needed, as it clutters the codebase
and diminishes readability. Run CodeQL against the codebase and review all
instances of commented-out code.

● Class and function names do not follow Python naming conventions. It is best
practice to follow the naming conventions for a given programming language when
defining things such as classes and functions. Following the standard naming
convention will help improve the readability of the codebase. Currently, the DWConv
function in models/common.py#L147, the autoShape class in
models/common.py#L865, and the aLRPLoss class in utils/loss.py#L275, do
not follow standard naming conventions; functions should begin with a lowercase
letter, and classes should begin with an uppercase letter.

● Multiple code paths in the codebase are unreachable. There are multiple
locations in the codebase that contain logic that is unreachable because it is
currently behind an if statement that will always be false. These locations are
currently unreachable: lines 47 and 97 of detect.py, lines 689 and 786 of
utils/general.py, and line 45 of utils/google_utils.py. All instances that
are mistakes should be corrected; otherwise, the logic in these unreachable code
paths should be removed.

Trail of Bits 54 YOLO Security Assessment
PUBLIC

● Multiple parameters and variables are unused throughout the codebase.
Multiple locations in the codebase that contain parameters and variables that are
defined but never used. It is a best practice to remove all unused values to improve
the readability of the codebase. Run CodeQL against the codebase and review all
instances of unused parameters and variables.

● Multiple built-in variables are shadowed by local variables. The Python
language contains several built-in variables, such as str and dict. However, Python
allows you to declare variables with the same name, which will make the built-in
variables unusable within the scope of that variable. It is considered a best practice
not to name variables after these keywords, as this hurts readability and could lead
to unexpected errors. The following locations shadow either built-in variables or
global variables: line 956 of models/common.py, lines 101 and 269 of test.py,
lines 57 and 156 of utils/general.py, and lines 172 and 216 of
utils/torch_utils.py.

● Magic numbers are used throughout the codebase. It is considered a best
practice to not rely on magic numbers as it hurts readability and makes the
codebase more error-prone to maintain. Each instance of a magic number should
be replaced with a variable of some kind. This can be found in the
model/common.py file on lines 475, 476, 1090, 1237, and 1238.

● Assert statements are used throughout the codebase. This is not recommended,
as the corresponding code is removed when compiling to optimized bytecode.

● Various parts of the codebase utilize Python set(). This is not recommended, as
the behavior of sets differs between Python versions with regards to iteration order.
This was found in L59 of export.py, L262 of models/experimental.py, L201 of
test.py, L54 of utils/datasets.py, and L137 of
utils/wandb_logging/wandb_utils.py.

● Various parts of the codebase include implicit type conversions with Torch
tensors. The YOLO system has a fairly complex model architecture that requires
complex tensor operations performed across multiple layers. Python’s flexible type
system is known to be error-prone; when implementation flaws occur from mixed
types, debugging these issues can be difficult and time consuming. For YOLOv7,
these types of issues could result in model performance degradation or
denial-of-service attacks. It is considered a best practice to minimize the mixing of
different numeric types in order to mitigate these types of issues. For instance, the
constructor torch.Tensor() is used instead of torch.tensor() in multiple
places; this is not recommended, as torch.Tensor() is a legacy constructor and
an alias for torch.FloatTensor(), resulting in an implicit type conversion. In
addition, tensor operations performed by non-Torch functions, such as NumPy,
Math, or built-in Python functions, can also result in implicit type conversions.

Trail of Bits 55 YOLO Security Assessment
PUBLIC

Review instances of the codebase where critical operations are being performed,
and, where possible, unify the numeric types to a single type, such as FP32.

Trail of Bits 56 YOLO Security Assessment
PUBLIC

D. Automated Testing

This section describes the setup of the automated analysis tools used during this audit.

CodeQL
We analyzed the codebase with the public Python CodeQL queries, codeql-python. These
rules resulted in the discovery of multiple items listed in appendix C. To run CodeQL on the
codebase, first create the Python database by running codeql database create
codeql.db –language=python. Then, run the Python queries by running codeql
database analyze codeql.db –{RULESET}. If there are any plans to incorporate
CodeQL into the YOLOv7 codebase, we recommend reviewing CodeQL’s licensing policies.

Semgrep
Semgrep can be installed using pip by running python3 -m pip install semgrep. To run
Semgrep on a codebase, run semgrep --config “<CONFIGURATION>” in the root
directory of the project. Here, <CONFIGURATION> can be a single rule, a directory of rules,
or the name of a rule set hosted on the Semgrep registry.

Trail of Bits maintains a repository of custom Semgrep rules targeting the misuse of
Machine Learning platforms such as PyTorch. We ran these custom Semgrep rules against
the YOLOv7 codebase to identify potential ML-specific issues. These rules resulted in the
discovery of issue TOB-YOLO-2 and some of the items listed in appendix C.

TorchScript Automatic Trace Checking
When using torch.jit.trace, a randomly generated set of input tensors can be passed
into the check_inputs argument to utilize the TorchScript automatic tracer checker. The
checker retraces the computation of the model on these tensors to find any divergences. In
conjunction with this, both the check_tolerance and check_trace arguments should be
used, and the strict argument should be set to True. This facilitates the pinpointing of
edge cases.

Trail of Bits 57 YOLO Security Assessment
PUBLIC

https://github.com/github/codeql/tree/codeql-cli/latest/python/ql/src
https://blog.trailofbits.com/2022/10/03/semgrep-maching-learning-static-analysis/

