
 CoreDNS
 Security Assessment

 March 10, 2022

 Prepared for:

 Judd Luckey

 Infoblox

 Prepared by:

 Alex Useche

 Shaun Mirani

 About Trail of Bits

 Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
 assessment and advisory services to some of the world’s most targeted organizations. We
 combine high- end security research with a real -world attacker mentality to reduce risk and
 fortify code. With 80+ employees around the globe, we’ve helped secure critical software
 elements that support billions of end users, including Kubernetes and the Linux kernel.

 We maintain an exhaustive list of publications at https://github.com/trailofbits/publications ,
 with links to papers, presentations, public audit reports, and podcast appearances.

 In recent years, Trail of Bits consultants have showcased cutting-edge research through
 presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
 the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

 We specialize in software testing and code review projects, supporting client organizations
 in the technology, defense, and finance industries, as well as government entities. Notable
 clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

 Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
 projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
 MakerDAO, Matic, Uniswap, Web3, and Zcash.

 To keep up to date with our latest news and announcements, please follow @trailofbits on
 Twitter and explore our public repositories at https://github.com/trailofbits . To engage us
 directly, visit our “Contact” page at https://www.trailofbits.com/contact , or email us at
 info@trailofbits.com .

 Trail of Bits, Inc.
 228 Park Ave S #80688
 New York, NY 10003
 https://www.trailofbits.com
 info@trailofbits.com

 Trail of Bits 1 CoreDNS Security Assessment
 PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

 Notices and Remarks

 Copyright and Distribution
 © 2022 by Trail of Bits, Inc.

 All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
 report in the United Kingdom.

 This report is considered by Trail of Bits to be public information; it is licensed to the Linux
 Foundation under the terms of the project statement of work and has been made public at
 the Linux Foundation’s request. Material within this report may not be reproduced or
 distributed in part or in whole without the express written permission of Trail of Bits.

 Test Coverage Disclaimer
 All activities undertaken by Trail of Bits in association with this project were performed in
 accordance with a statement of work and mutually agreed upon project plan.

 Security assessment projects are time-boxed and often reliant on information that may be
 provided by a client, its affiliates, or its partners. As such, the findings documented in this
 report should not be considered a comprehensive list of security issues, flaws, or defects in
 the target system or codebase.

 Trail of Bits 2 CoreDNS Security Assessment
 PUBLIC

 Table of Contents

 About Trail of Bits 1

 Notices and Remarks 2

 Table of Contents 3

 Executive Summary 5

 Project Summary 7

 Project Goals 8

 Project Targets 9

 Project Coverage 10

 CoreDNS Threat Model 11

 Summary of Findings 19

 Detailed Findings 21

 1. Risk of a race condition in the secondary plugin’s setup function 21

 2. Upstream errors captured in the grpc plugin are not returned 23

 3. Index-out-of-range panic in autopath plugin initialization 25

 4. Index-out-of-range panic in forward plugin initialization 27

 5. Use of deprecated PreferServerCipherSuites field 29

 6. Use of the MD5 hash function to detect Corefile changes 30

 7. Use of default math/rand seed in grpc and forward plugins’ “random”
 server-selection policy 31

 8. Cache plugin does not account for hash table collisions 33

 9. Index-out-of-range reference in kubernetes plugin 35

 10. Calls to time.After() in select statements can lead to memory leaks 36

 11. Incomplete list of debugging data exposed by the prometheus plugin 38

 Trail of Bits 3 CoreDNS Security Assessment
 PUBLIC

 12. Cloud integrations require cleartext storage of keys in the Corefile 40

 13. Lack of rate-limiting controls 41

 14. Lack of a limit on the size of response bodies 43

 15. Index-out-of-range panic in grpc plugin initialization 44

 A. Vulnerability Categories 46

 B. Anonymous Race Condition Proof of Concept 48

 C. Fuzzing CoreDNS 50

 D. Rapid Risk Assessment Template 54

 Trail of Bits 4 CoreDNS Security Assessment
 PUBLIC

 Executive Summary

 Engagement Overview
 The Linux Foundation engaged Trail of Bits to review the security of its CoreDNS
 application. From January 10 to January 14, 2022, a team of two consultants conducted a
 security review of the client-provided source code, with four person-weeks of effort. Details
 of the project’s timeline, test targets, and coverage are provided in subsequent sections of
 this report.

 Project Scope
 Our testing efforts were focused on the identification of flaws that could result in a
 compromise of confidentiality, integrity, or availability of the target system. We performed
 automated testing and a manual review of the code, in addition to running system
 elements. We also conducted a lightweight threat model of the application, with the goal of
 providing the Linux Foundation with a high-level picture of the threats present in the
 design of CoreDNS.

 Summary of Findings
 The audit uncovered one high-severity issue (TOB-CDNS-8) concerning a bug that could
 lead to cache poisoning attacks. The majority of the other issues are of informational or low
 severity; these include several resulting from insufficient data validation, specifically from
 assumptions about the data processed by various functions, which we discovered by
 running fuzzing harnesses. Most of the findings pertain to denial-of-service vulnerabilities.

 A summary of the findings is provided below; note that because of the requirements and
 time constraints of the audit, we could not determine each finding’s severity and difficulty
 level.

 Trail of Bits 5 CoreDNS Security Assessment
 PUBLIC

 EXPOSURE ANALYSIS

 Severity Count

 High 1

 Medium 1

 Low 7

 Informational 5

 Undetermined 1

 CATEGORY BREAKDOWN

 Category Count

 Undefined Behavior 1

 Error Reporting 1

 Denial of Service 7

 Cryptography 3

 Data Validation 1

 Data Exposure 2

 Trail of Bits 6 CoreDNS Security Assessment
 PUBLIC

 Project Summary

 Contact Information
 The following managers were associated with this project:

 Dan Guido , Account Manager Cara Pearson , Project Manager
 dan.guido@trailofbits.com cara.pearson@trailofbits.com

 The following engineers were associated with this project:

 Alex Useche , Consultant Shaun Mirani , Consultant
 alex.useche@trailofbits.com shaun.mirani@trailofbits.com

 Project Timeline
 The significant events and milestones of the project are listed below.

 Date Event

 January 4, 2022 Pre-project kickoff call

 January 7, 2022 Status update meeting #1

 January 18, 2022 Delivery of report draft and report readout meeting

 Trail of Bits 7 CoreDNS Security Assessment
 PUBLIC

 Project Goals

 The engagement was scoped to provide a security assessment of CoreDNS and to conduct
 a high-level lightweight threat model of the application’s design. As part of our code review
 and dynamic testing of the application, we sought to answer the following non-exhaustive
 list of questions:

 ● Does the application properly handle all errors?

 ● Are any components of the application susceptible to log injection attacks?

 ● Could an attacker bypass the access controls enforced by the acl (access control
 list) plugin?

 ● Is the application reasonably secure by default when installed and configured as
 outlined in the documentation?

 ● Does the application implement proper data validation controls?

 ● Are the cryptographic controls used throughout the codebase sound?

 Trail of Bits 8 CoreDNS Security Assessment
 PUBLIC

 Project Targets

 The engagement involved a review and testing of the following target.

 CoreDNS

 Repository https://github.com/coredns/coredns

 Version 7ee128a53da7ca1ee512422b56f31d4a24ed7b8b

 Type DNS server

 Platform Go

 Trail of Bits 9 CoreDNS Security Assessment
 PUBLIC

https://github.com/coredns/coredns

 Project Coverage

 This section provides an overview of the analysis coverage of the review, as determined by
 our high-level engagement goals. Our approaches and their results include the following:

 ● DNS server . We reviewed the core logic supporting the DNS server, looking for
 issues related to data validation, the use of concurrency, the handling of errors, and
 the code’s correctness. This review also included manual and automated static
 analysis of the logic supporting DNS over HTTPS, over the Google remote procedure
 call (gRPC), and over Transport Layer Security (TLS).

 ● Plugin-loading logic . We reviewed the core plugin-loading logic for any correctness
 issues.

 ● Built-in plugins . The CoreDNS repository includes 52 plugins. Given the
 engagement’s time constraints, we focused on the plugins deemed the most critical
 and those identified as priorities by the CoreDNS team (i.e., those typically used by
 default in Kubernetes deployments). We reviewed the following plugins:
 kubernetes , tls , file , log , loop , reload , etcd , prometheus , errors , grpc ,
 pprof , azure , route53 , health , loadbalance , ready , forward , cache , acl .

 ● Fuzz testing . We used go-fuzz to perform fuzz testing of the CoreDNS components
 listed in Appendix C .

 ● Other logic . We sought to identify any issues in the use of cryptography and ran the
 following automated static analysis tools against the entire codebase: Semgrep ,
 CodeQL , ineffassign , errcheck , gosec , and GCatch .

 Coverage Limitations
 Because of the time-boxed nature of testing work, it is common to encounter coverage
 limitations. During this project, we were unable to perform comprehensive testing of the
 plugins not listed above. Furthermore, our threat model is not exhaustive, as those other
 plugins may include functionalities that increase the complexity of the design described in
 the CoreDNS Threat Model section . Lastly, because we performed lightweight threat
 modeling, the threat model should be expanded and further examined as CoreDNS
 continues to be developed.

 Trail of Bits 10 CoreDNS Security Assessment
 PUBLIC

https://github.com/dvyukov/go-fuzz
https://semgrep.dev/
https://codeql.github.com/
https://github.com/gordonklaus/ineffassign
https://github.com/kisielk/errcheck
https://github.com/securego/gosec
https://github.com/system-pclub/GCatch

 CoreDNS Threat Model

 As part of the audit, Trail of Bits conducted a lightweight threat model, drawing from the
 Mozilla Rapid Risk Assessment methodology and the National Institute of Standards and
 Technology’s (NIST) guidance on data-centric threat modeling (NIST 800-154). We began our
 assessment of the application’s design by reviewing the documentation on the CoreDNS
 website and the various README files in the CoreDNS repository. We gained an initial
 understanding of the system through our review of the code, which we conducted in
 tandem with the threat model. Lastly, at a short meeting on January 14, 2022, we
 interviewed engineers and members of the CoreDNS red team on the design of the
 application, security considerations, and assumptions regarding the use of the application
 and its external plugins.

 The threat model focuses on the use cases of the core logic as well as common data flow
 paths; these include the paths of the HTTP endpoints exposed by the metrics , pprof ,
 ready , and health plugins.

 Assumptions
 In conducting this threat model, we did not make any specific assumptions regarding the
 plugins. We performed a high-level threat model of CoreDNS, considering how the use of
 certain types of plugins could affect its data flow, data storage, and communication with
 external parties such as cloud providers.

 Similarly, we did not make any specific assumptions regarding the back end for which
 CoreDNS provides DNS querying, forwarding, and mapping capabilities. For instance, the
 “back-end services” referenced in the “Data Flow” diagram could comprise a traditional
 network with servers and services hosted on-premises, services hosted in a Kubernetes
 cluster, or a cloud infrastructure.

 Trail of Bits 11 CoreDNS Security Assessment
 PUBLIC

https://infosec.mozilla.org/guidelines/risk/rapid_risk_assessment.html
https://csrc.nist.gov/publications/detail/sp/800-154/draft

 Data Types

 Data Description

 DNS Queries DNS queries originate from DNS clients such as web browsers, terminal
 utilities, and other applications. Queries can be sent over the User
 Datagram Protocol (UDP), the Transmission Control Protocol (TCP), or
 gRPC, or through DNS over HTTPS (DoH) or DNS over TLS (DoT).

 DNS Replies When CoreDNS receives a DNS query from a client, it uses the plugin chain
 to process the query and then sends an appropriate DNS reply back to the
 client. CoreDNS may also receive DNS replies from upstream servers such
 as those used in the forward and grpc plugins.

 Plugin API Calls Plugins may expose independent APIs over transports like HTTP. Clients
 can issue requests to these APIs and receive responses outside of the
 typical DNS data flows. For example, the health plugin exposes an HTTP
 endpoint that clients can query to determine the health status of the
 server.

 Cloud API Calls CoreDNS includes plugins for serving zones from the DNS services of cloud
 providers such as AWS, Azure, and the Google Cloud Platform. To
 authenticate to the services of those providers and interact with data,
 CoreDNS must make network calls to their APIs on the wider internet.

 Log Data CoreDNS provides logging capabilities through the log , errors , and dump
 plugins. Logged data can include query and reply details and error
 messages that reveal information about the application’s internal state.

 Metrics CoreDNS is instrumented to collect basic metrics and statistical
 information that can be exported to a location specified by the end user
 via the prometheus plugin.

 Secrets CoreDNS handles and processes secrets including private keys used to
 facilitate TLS-based transport and to create credentials for the cloud
 services used by the plugins.

 Trail of Bits 12 CoreDNS Security Assessment
 PUBLIC

 Configuration
 Data

 CoreDNS uses configuration data including the main Corefile and zone
 data.

 Components

 Component Description

 DNS Server This server runs CoreDNS and handles DNS queries and tasks for other
 services running in a network.

 Plugins CoreDNS chains plugins responsible for tasks such as connecting to cloud
 services, logging requests, and integrating with Kubernetes. It provides
 internal plugins (plugins included in the CoreDNS codebase) and enables
 the use of external plugins, which anyone can develop. To add an external
 plugin, one must rebuild CoreDNS after incorporating the external plugin
 source code.

 Storage The etcd plugin enables CoreDNS to interact with etcd, and the trace
 plugin enables it to store local log files.

 HTTP Server Plugins such as the metrics and pprof plugins expose data endpoints via
 HTTP endpoints.

 Trust Zones
 Trust zones capture logical boundaries where controls should or could be enforced by the
 system and allow developers to implement controls and policies between components’
 zones.

 Zone Description Included Components

 Internet The wider external-facing
 internet zone, which typically
 includes users and software that
 interface with the service but

 ● CLI
 ● Browser clients
 ● Cloud infrastructure

 Trail of Bits 13 CoreDNS Security Assessment
 PUBLIC

 does not contain core
 application logic

 Local Network The local network where
 CoreDNS is run

 ● CoreDNS server
 ● Plugin chain

 Service
 Network(s)

 The network(s) accessed by
 CoreDNS

 ● K8s clusters
 ● Other networks used by

 CoreDNS to run DNS services

 Trust Zone Connections
 We can draw from our understanding of what data flows between trust zones and why to
 enumerate attack scenarios.

 Originating
 Zone

 Destination
 Zone

 Data Connection
 Types

 Authentication and
 Authorization Controls

 Internet Local
 Network

 DNS
 queries

 Plugin API
 calls

 UDP, TCP, DoH,
 DoT, and gRPC

 HTTP

 acl plugin

 Local
 Network

 Internet DNS
 replies

 External
 API calls

 UDP, TCP, DoH,
 DoT, and gRPC

 HTTP

 Authentication via API calls
 to cloud services

 Authorization of responses
 by acl plugin

 Local
 Network

 Local
 Network

 DNS
 queries

 Plugin API
 calls

 UDP, TCP, DoH,
 DoT, and gRPC

 HTTP

 acl plugin

 Trail of Bits 14 CoreDNS Security Assessment
 PUBLIC

 Local
 Network

 Services
 Network

 API calls

 DNS
 queries

 UTP, TCP, and
 HTTP

 N/A

 Threat Actors
 Similarly to establishing trust zones, defining malicious actors before conducting a threat
 model is useful in determining which protections, if any, are necessary to mitigate or
 remediate a vulnerability. We also define other “users” of the system who may be impacted
 by, or induced to undertake, an attack.

 Actor Description

 Malicious Internal
 User

 Malicious internal users often have privileged access to a wide range of
 resources, such as the Kubernetes cluster that hosts CoreDNS.

 External Plugin
 Developer

 A developer of an external plugin for CoreDNS could intentionally
 include malware in the plugin.

 Internal Attacker An internal attacker is one who has transited one or more trust
 boundaries, such as an attacker with access to a cluster or to the
 machine hosting CoreDNS.

 Operator An operator could misconfigure CoreDNS, resulting in unexpected
 behavior or error conditions that weaken its security controls and may
 not be adequately reported.

 To mitigate such concerns, the system should maintain an audit trail
 by logging all errors, and administrators should be provided extensive
 documentation.

 End User External users of the services supported by CoreDNS communicate
 with the application through DNS queries, gRPC, and HTTP. An end
 user may be a legitimate external actor or one with malicious intent
 against the CoreDNS server and its infrastructure.

 Trail of Bits 15 CoreDNS Security Assessment
 PUBLIC

 Data Flow

 Threat Scenarios

 Threat Description Actor(s) Component(s)

 Compromise of
 secrets stored in
 the Corefile

 The Corefile includes secrets
 used to establish
 connections with cloud
 providers.

 Malicious local
 user

 Configuration files
 for CoreDNS

 Modification of
 secrets in the
 Corefile

 An attacker modifies the
 Corefile to force CoreDNS to
 communicate with

 Malicious local
 user

 Configuration files
 for CoreDNS

 Trail of Bits 16 CoreDNS Security Assessment
 PUBLIC

 unintended cloud services.

 Faulty external
 plugin

 An external plugin
 introduces issues that could
 crash the application, such
 as goroutine leaks.

 External plugin
 developer

 Plugins

 Malicious plugin
 compiled with the
 CoreDNS binary

 The CoreDNS binary is
 compiled with a malicious
 plugin, which is downloaded
 by a user and runs
 unauthorized actions.

 External plugin
 developer

 Plugins

 Distributed denial
 of service (DDoS)
 via DNS
 amplification

 An attacker launches a DNS
 amplification attack against
 a CoreDNS server, causing a
 loss of availability.

 End user and
 internal
 attacker

 DNS server

 Access to metrics
 and debugging
 endpoints

 An attacker uses the Go
 runtime debugging data in
 the metrics and pprof
 plugins to formulate a
 denial-of-service (DoS)
 attack.

 End user and
 internal
 attacker

 Plugins

 Misconfiguration
 of a CoreDNS
 endpoint

 Misconfiguration of a
 CoreDNS endpoint results in
 invalid DNS responses,
 ineffective ACL controls, or
 the unintended sharing of
 debugging data.

 Operator and
 end user

 Configuration files
 for CoreDNS and
 zone files

 Cache poisoning
 vulnerability

 A faulty assumption or data
 validation issue in the cache
 plugin logic results in a
 cache poisoning
 vulnerability, compromising

 End user DNS server and
 plugins

 Trail of Bits 17 CoreDNS Security Assessment
 PUBLIC

 the integrity of DNS replies.

 Recommendations
 ● Develop guidance on security best practices for CoreDNS users. This guidance can

 be modeled after HashiCorp Nomad’s Security Model and related security
 recommendations. It should recommend plugins that can help harden the security
 of CoreDNS and implement security-in-depth controls, such as the tls and acl
 plugins.

 ● Establish requirements for the development of external plugins, such as unit testing
 requirements.

 ● Extend this threat model and continue to explore potential system flaws that could
 lead to vulnerabilities. To follow a Rapid Risk Assessment methodology, use the
 template in Appendix D .

 ● Extend the GitHub Action tests to include additional tools, such as those used in this
 assessment.

 ● Implement rate-limiting controls in CoreDNS. For instance, consider incorporating
 the rrl plugin, used for rate limiting, into the main set of CoreDNS plugins to help
 prevent DoS attacks.

 ● Consider establishing a process for checking that external plugins adhere to best
 practices. Document the process and share it with users, or run through the process
 before listing external plugins as “verified.”

 Trail of Bits 18 CoreDNS Security Assessment
 PUBLIC

https://www.nomadproject.io/docs/internals/security#secure-configuration
https://github.com/coredns/rrl

 Summary of Findings

 The table below summarizes the findings of the review, including type and severity details.

 ID Title Type Severity

 1 Risk of a race condition in the secondary plugin’s
 setup function

 Undefined
 Behavior

 Low

 2 Upstream errors captured in the grpc plugin are
 not returned

 Error Reporting Low

 3 Index-out-of-range panic in autopath plugin
 initialization

 Denial of Service Informational

 4 Index-out-of-range panic in forward plugin
 initialization

 Denial of Service Informational

 5 Use of deprecated PreferServerCipherSuites field Cryptography Informational

 6 Use of the MD5 hash function to detect Corefile
 changes

 Cryptography Low

 7 Use of default math/rand seed in grpc and
 forward plugins’ “random” server-selection policy

 Cryptography Low

 8 Cache plugin does not account for hash table
 collisions

 Data Validation High

 9 Index-out-of-range reference in kubernetes plugin Denial of Service Undetermined

 10 Calls to time.After() in select statements can lead
 to memory leaks

 Denial of Service Low

 11 Incomplete list of debugging data exposed by the
 prometheus plugin

 Data Exposure Low

 Trail of Bits 19 CoreDNS Security Assessment
 PUBLIC

 12 Cloud integrations require cleartext storage of
 keys in the Corefile

 Data Exposure Medium

 13 Lack of rate-limiting controls Denial of Service Low

 14 Lack of a limit on the size of response bodies Denial of Service Informational

 15 Index-out-of-range panic in grpc plugin
 initialization

 Denial of Service Informational

 Trail of Bits 20 CoreDNS Security Assessment
 PUBLIC

 Detailed Findings

 1. Risk of a race condition in the secondary plugin’s setup function

 Severity: Low Difficulty: Undetermined

 Type: Undefined Behavior Finding ID: TOB-CDNS-1

 Target: plugin/secondary/setup.go#L19-L53

 Description
 When it fails to transfer a zone from another server, the setup function of the secondary
 plugin prints a message to standard output. It obtains the name of the zone, stored in the
 variable n , from a loop and prints the message in an anonymous inner goroutine. However,
 the variable is not copied before being used in the anonymous goroutine, and the value
 that n points to is likely to change by the time the scheduler executes the goroutine.
 Consequently, the value of n will be inaccurate when it is printed.

 19 func setup(c *caddy.Controller) error {

 24 // (...).

 26 for _, n := range zones.Names {

 27 // (...)

 29 c.OnStartup(func () error {

 30 z.StartupOnce.Do(func () {

 31 go func () {

 32 // (...)

 35 for {

 36 // (...)

 40 log.Warningf("All '%s' masters failed to

 transfer, retrying in %s: %s" , n , dur.String(), err)

 41 // (...)

 46 }

 47 z.Update()

 48 }()

 49 })

 50 return nil

 51 })

 52 }

 53 }

 Figure 1.1: The value of n is not copied before it is used in the anonymous goroutine and could
 be logged incorrectly. (plugin/secondary/setup.go#L19-L53)

 Trail of Bits 21 CoreDNS Security Assessment
 PUBLIC

https://github.com/coredns/coredns/blob/7ee128a53da7ca1ee512422b56f31d4a24ed7b8b/plugin/secondary/setup.go#L19-L53

 Exploit Scenario
 An operator of a CoreDNS server enables the secondary plugin. The operator sees an
 error in the standard output indicating that the zone transfer failed. However, the error
 points to an invalid zone, making it more difficult for the operator to troubleshoot and fix
 the issue.

 Recommendations
 Short term, create a copy of n before it is used in the anonymous goroutine. See Appendix
 B for a proof of concept demonstrating this issue and an example of the fix.

 Long term, integrate Trail of Bits’ anonymous-race-condition Semgrep rule into the
 CI/CD pipeline to catch this type of race condition.

 Trail of Bits 22 CoreDNS Security Assessment
 PUBLIC

https://docs.google.com/document/d/1Ymr2Sx08GjzMyqhO2U1BQhmA4pNnA54IooZr7rmO6ms/edit#heading=h.18gkkl8mzidx
https://docs.google.com/document/d/1Ymr2Sx08GjzMyqhO2U1BQhmA4pNnA54IooZr7rmO6ms/edit#heading=h.18gkkl8mzidx
https://github.com/trailofbits/semgrep-rules/blob/main/go/anonymous-race-condition.yml

 2. Upstream errors captured in the grpc plugin are not returned

 Severity: Low Difficulty: Undetermined

 Type: Error Reporting Finding ID: TOB-CDNS-2

 Target: plugin/grpc/grpc.go#L77-L95

 Description
 In the ServeDNS implementation of the grpc plugin, upstream errors are captured in a
 loop. However, once an error is captured in the upstreamErr variable, the function exits
 with a nil error; this is because there is no break statement forcing the function to exit
 the loop and to reach a return statement, at which point it would return the error value.
 The ServeDNS function of the forward plugin includes a similar but correct
 implementation.

 func (g *GRPC) ServeDNS(ctx context.Context, w dns.ResponseWriter, r *dns.Msg) (int , error)

 {

 // (...)

 upstreamErr = err

 // Check if the reply is correct; if not return FormErr.

 if !state.Match(ret) {

 debug.Hexdumpf(ret, "Wrong reply for id: %d, %s %d" , ret.Id,

 state.QName(), state.QType())

 formerr := new (dns.Msg)

 formerr.SetRcode(state.Req, dns.RcodeFormatError)

 w.WriteMsg(formerr)

 return 0 , nil

 }

 w.WriteMsg(ret)

 return 0 , nil

 }

 if upstreamErr != nil {

 return dns.RcodeServerFailure, upstreamErr

 }

 Figure 2.1: plugin/secondary/setup.go#L19-L53

 Trail of Bits 23 CoreDNS Security Assessment
 PUBLIC

https://github.com/coredns/coredns/blob/7ee128a53da7ca1ee512422b56f31d4a24ed7b8b/plugin/forward/forward.go#L158-L169
https://github.com/coredns/coredns/blob/7ee128a53da7ca1ee512422b56f31d4a24ed7b8b/plugin/secondary/setup.go#L19-L53

 Exploit Scenario
 An operator runs CoreDNS with the grpc plugin. Upstream errors cause the gRPC
 functionality to fail. However, because the errors are not logged, the operator remains
 unaware of their root cause and has difficulty troubleshooting and remediating the issue.

 Recommendations
 Short term, correct the ineffectual assignment to ensure that errors captured by the plugin
 are returned.

 Long term, integrate ineffassign into the CI/CD pipeline to catch this and similar issues.

 Trail of Bits 24 CoreDNS Security Assessment
 PUBLIC

https://github.com/gordonklaus/ineffassign

 3. Index-out-of-range panic in autopath plugin initialization

 Severity: Informational Difficulty: Undetermined

 Type: Denial of Service Finding ID: TOB-CDNS-3

 Target: plugin/autopath/setup.go#L53

 Description
 The following syntax is used to configure the autopath plugin:

 autopath [ZONE...] RESOLV-CONF

 The RESOLV-CONF parameter can point to a resolv.conf(5) configuration file or to
 another plugin, if the string in the resolv variable is prefixed with an “@” symbol (e.g.,
 “@kubernetes”). However, the autoPathParse function does not ensure that the length of
 the RESOLV-CONF parameter is greater than zero before dereferencing its first element
 and comparing it with the “@” character.

 func autoPathParse(c *caddy.Controller) (*AutoPath, string , error) {

 ap := &AutoPath{}

 mw := ""

 for c.Next() {

 zoneAndresolv := c.RemainingArgs()

 if len (zoneAndresolv) < 1 {

 return ap, "" , fmt.Errorf("no resolv-conf specified")

 }

 resolv := zoneAndresolv[len (zoneAndresolv)- 1]

 if resolv[0] == '@' {

 mw = resolv[1 :]

 Figure 3.1: The length of resolv may be zero when the first element is checked.
 (plugin/autopath/setup.go#L45-L54)

 Specifying a configuration file with a zero-length RESOLV-CONF parameter, as shown in
 figure 3.2, would cause CoreDNS to panic.

 0

 autopath ""

 Figure 3.2: An autopath configuration with a zero-length RESOLV-CONF parameter

 Trail of Bits 25 CoreDNS Security Assessment
 PUBLIC

https://github.com/coredns/coredns/blob/7ee128a53da7ca1ee512422b56f31d4a24ed7b8b/plugin/autopath/setup.go#L45-L54

 panic: runtime error: index out of range [0] with length 0

 goroutine 1 [running]:

 github.com/coredns/coredns/plugin/autopath.autoPathParse(0xc000518870)

 /home/ubuntu/audit-coredns/client-code/coredns/plugin/autopath/setup.go:53 +0x35c

 github.com/coredns/coredns/plugin/autopath.setup(0xc000518870)

 /home/ubuntu/audit-coredns/client-code/coredns/plugin/autopath/setup.go:16 +0x33

 github.com/coredns/caddy.executeDirectives(0xc00029eb00, {0x7ffdc770671b, 0x8}, {0x324cfa0,

 0x31, 0x1000000004b7e06}, {0xc000543260, 0x1, 0x8}, 0x0)

 /home/ubuntu/go/pkg/mod/github.com/coredns/caddy@v1.1.1/caddy.go:661 +0x5f6

 github.com/coredns/caddy.ValidateAndExecuteDirectives({0x22394b8, 0xc0003e8a00},

 0xc0003e8a00, 0x0)

 /home/ubuntu/go/pkg/mod/github.com/coredns/caddy@v1.1.1/caddy.go:612 +0x3e5

 github.com/coredns/caddy.startWithListenerFds({0x22394b8, 0xc0003e8a00}, 0xc00029eb00, 0x0)

 /home/ubuntu/go/pkg/mod/github.com/coredns/caddy@v1.1.1/caddy.go:515 +0x274

 github.com/coredns/caddy.Start({0x22394b8, 0xc0003e8a00})

 /home/ubuntu/go/pkg/mod/github.com/coredns/caddy@v1.1.1/caddy.go:472 +0xe5

 github.com/coredns/coredns/coremain.Run()

 /home/ubuntu/audit-coredns/client-code/coredns/coremain/run.go:62 +0x1cd

 main.main()

 /home/ubuntu/audit-coredns/client-code/coredns/coredns.go:12 +0x17

 Figure 3.3: CoreDNS panics when loading the autopath configuration.

 Exploit Scenario
 An operator of a CoreDNS server provides an empty RESOLV-CONF parameter when
 configuring the autopath plugin, causing a panic. Because CoreDNS does not provide a
 clear explanation of what went wrong, it is difficult for the operator to troubleshoot and fix
 the issue.

 Recommendations
 Short term, verify that the resolv variable is a non-empty string before indexing it.

 Long term, review the codebase for instances in which data is indexed without undergoing
 a length check; handling untrusted data in this way may lead to a more severe denial of
 service (DoS).

 Trail of Bits 26 CoreDNS Security Assessment
 PUBLIC

 4. Index-out-of-range panic in forward plugin initialization

 Severity: Informational Difficulty: Undetermined

 Type: Denial of Service Finding ID: TOB-CDNS-4

 Target: plugin/forward/setup.go#97

 Description
 Initializing the forward plugin involves parsing the relevant configuration section.

 func parseStanza(c *caddy.Controller) (*Forward, error) {

 f := New()

 if !c.Args(&f.from) {

 return f, c.ArgErr()

 }

 origFrom := f.from

 zones := plugin.Host(f.from).NormalizeExact()

 f.from = zones[0] // there can only be one here, won't work with non-octet reverse

 Figure 4.1: The length of the zones variable may be zero when the first element is checked.
 (plugin/forward/setup.go#L89-L97)

 An invalid configuration file for the forward plugin could cause the zones variable to have
 a length of zero. A Base64-encoded example of such a configuration file is shown in figure
 4.2.

 Lgpmb3J3YXJkIE5vTWF0Pk69VL0vvVN0ZXJhbENoYXJDbGFzc0FueUNoYXJOb3ROTEEniez6bnlDaGFyQmVnaW5MaW5l

 RW5kTGluZUJlZ2luVGV4dEVuZFRleHRXb3JkQm91bmRhcnlOb1dvYXRpbmcgc3lzdGVtIDogImV4dCIsICJ4ZnMiLCAi

 bnRTaW50NjRLaW5kZnMiLiB5IGluZmVycmVkIHRvIGJlIGV4dCBpZiB1bnNwZWNpZmllZCBlIDogaHR0cHM6Di9rdWJl

 cm5ldGVzaW9kb2NzY29uY2VwdHNzdG9yYWdldm9sdW1lcyMgIiIiIiIiIiIiIiIiJyCFmIWlsZj//4WuhZilr4WY5bCR

 mPCd

 Figure 4.2: The Base64-encoded forward configuration file

 Specifying a configuration file like that shown above would cause CoreDNS to panic when
 attempting to access the first element of zones :

 panic: runtime error: index out of range [0] with length 0

 goroutine 1 [running]:

 github.com/coredns/coredns/plugin/forward.parseStanza(0xc000440000)

 Trail of Bits 27 CoreDNS Security Assessment
 PUBLIC

https://github.com/coredns/coredns/blob/7ee128a53da7ca1ee512422b56f31d4a24ed7b8b/plugin/forward/setup.go#L89-L97

 /home/ubuntu/audit-coredns/client-code/coredns/plugin/forward/setup.go:97 +0x972

 github.com/coredns/coredns/plugin/forward.parseForward(0xc000440000)

 /home/ubuntu/audit-coredns/client-code/coredns/plugin/forward/setup.go:81 +0x5e

 github.com/coredns/coredns/plugin/forward.setup(0xc000440000)

 /home/ubuntu/audit-coredns/client-code/coredns/plugin/forward/setup.go:22 +0x33

 github.com/coredns/caddy.executeDirectives(0xc0000ea800, {0x7ffdf9f6e6ed, 0x36}, {0x324cfa0,

 0x31, 0x1000000004b7e06}, {0xc00056a860, 0x1, 0x8}, 0x0)

 /home/ubuntu/go/pkg/mod/github.com/coredns/caddy@v1.1.1/caddy.go:661 +0x5f6

 github.com/coredns/caddy.ValidateAndExecuteDirectives({0x22394b8, 0xc00024ea80},

 0xc00024ea80, 0x0)

 /home/ubuntu/go/pkg/mod/github.com/coredns/caddy@v1.1.1/caddy.go:612 +0x3e5

 github.com/coredns/caddy.startWithListenerFds({0x22394b8, 0xc00024ea80}, 0xc0000ea800, 0x0)

 /home/ubuntu/go/pkg/mod/github.com/coredns/caddy@v1.1.1/caddy.go:515 +0x274

 github.com/coredns/caddy.Start({0x22394b8, 0xc00024ea80})

 /home/ubuntu/go/pkg/mod/github.com/coredns/caddy@v1.1.1/caddy.go:472 +0xe5

 github.com/coredns/coredns/coremain.Run()

 /home/ubuntu/audit-coredns/client-code/coredns/coremain/run.go:62 +0x1cd

 main.main()

 /home/ubuntu/audit-coredns/client-code/coredns/coredns.go:12 +0x17

 Figure 4.3: CoreDNS panics when loading the forward configuration.

 Exploit Scenario
 An operator of a CoreDNS server misconfigures the forward plugin, causing a panic.
 Because CoreDNS does not provide a clear explanation of what went wrong, it is difficult
 for the operator to troubleshoot and fix the issue.

 Recommendations
 Short term, verify that the zones variable has the correct number of elements before
 indexing it.

 Long term, review the codebase for instances in which data is indexed without undergoing
 a length check; handling untrusted data in this way may lead to a more severe DoS.

 Trail of Bits 28 CoreDNS Security Assessment
 PUBLIC

 5. Use of deprecated PreferServerCipherSuites field

 Severity: Informational Difficulty: Undetermined

 Type: Cryptography Finding ID: TOB-CDNS-5

 Target: plugin/tls/tls.go#L36

 Description
 In the setTLSDefaults function of the tls plugin, the TLS configuration object includes a
 PreferServerCipherSuites field, which is set to true .

 func setTLSDefaults(tls *ctls.Config) {
 tls.MinVersion = ctls.VersionTLS12
 tls.MaxVersion = ctls.VersionTLS13
 tls.CipherSuites = [] uint16 {

 ctls.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
 ctls.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
 ctls.TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,
 ctls.TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,
 ctls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
 ctls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
 ctls.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
 ctls.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
 ctls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,

 }
 tls.PreferServerCipherSuites = true

 }

 Figure 5.1: plugin/tls/tls.go#L22-L37

 In the past, this property controlled whether a TLS connection would use the cipher suites
 preferred by the server or by the client. However, as of Go 1.17, this field is ignored.
 According to the Go documentation for crypto/tls , “Servers now select the best mutually
 supported cipher suite based on logic that takes into account inferred client hardware,
 server hardware, and security.”

 When CoreDNS is built using a recent Go version, the use of this property is redundant and
 may lead to false assumptions about how cipher suites are negotiated in a connection to a
 CoreDNS server.

 Recommendations
 Short term, add this issue to the internal issue tracker. Additionally, when support for Go
 versions older than 1.17 is entirely phased out of CoreDNS, remove the assignment to the
 deprecated PreferServerCipherSuites field.

 Trail of Bits 29 CoreDNS Security Assessment
 PUBLIC

https://github.com/coredns/coredns/blob/7ee128a53da7ca1ee512422b56f31d4a24ed7b8b/plugin/tls/tls.go#L22-L37
https://pkg.go.dev/crypto/tls

 6. Use of the MD5 hash function to detect Corefile changes

 Severity: Low Difficulty: High

 Type: Cryptography Finding ID: TOB-CDNS-6

 Target: plugin/reload/reload.go#L81

 Description
 The reload plugin is designed to automatically detect changes to a Corefile and to reload it
 if necessary. To determine whether a file has changed, the plugin periodically compares the
 current MD5 hash of the file to the last hash calculated for it
 (plugin/reload/reload.go#L81-L107). If the values are different, it reloads the
 Corefile.

 However, the MD5 hash function’s vulnerability to collisions decreases the reliability of this
 process; if two different files produce the same hash value, the plugin will not detect the
 difference between them.

 Exploit Scenario
 An operator of a CoreDNS server modifies a Corefile, but the MD5 hash of the modified file
 collides with that of the old file. As a result, the reload plugin does not detect the change.
 Instead, it continues to use the outdated server configuration without alerting the operator
 to its use.

 Recommendations
 Short term, improve the robustness of the reload plugin by using the SHA-512 hash
 function instead of MD5.

 Trail of Bits 30 CoreDNS Security Assessment
 PUBLIC

https://github.com/coredns/coredns/blob/7ee128a53da7ca1ee512422b56f31d4a24ed7b8b/plugin/reload/reload.go#L81-L107
https://en.wikipedia.org/wiki/MD5#Collision_vulnerabilities
https://pkg.go.dev/crypto/sha512#Sum512
https://pkg.go.dev/crypto/sha512#Sum512

 7. Use of default math/rand seed in grpc and forward plugins’ “random”
 server-selection policy

 Severity: Low Difficulty: Low

 Type: Cryptography Finding ID: TOB-CDNS-7

 Target: plugin/grpc/policy.go#L19-L37 , plugin/forward/policy.go#L19-L37

 Description
 The grpc and forward plugins use the random policy for selecting upstream servers. The
 implementation of this policy in the two plugins is identical and uses the math/rand
 package from the Go standard library.

 func (r *random) List(p []*Proxy) []*Proxy {

 switch len (p) {

 case 1 :

 return p

 case 2 :

 if rand.Int()% 2 == 0 {

 return []*Proxy{p[1], p[0]} // swap

 }

 return p

 }

 perms := rand.Perm(len (p))

 rnd := make ([]*Proxy, len (p))

 for i, p1 := range perms {

 rnd[i] = p[p1]

 }

 return rnd

 }

 Figure 7.1: plugin/grpc/policy.go#L19-L37

 As highlighted in figure 7.1, the random policy uses either rand.Int or rand.Perm to
 choose the order of the upstream servers, depending on the number of servers that have
 been configured.

 Unless a program using the random policy explicitly calls rand.Seed , the top-level
 functions rand.Int and rand.Perm behave as if they were seeded with the value 1 , which

 Trail of Bits 31 CoreDNS Security Assessment
 PUBLIC

https://github.com/coredns/coredns/blob/7ee128a53da7ca1ee512422b56f31d4a24ed7b8b/plugin/grpc/policy.go#L19-L37

 is the default seed for math/rand . CoreDNS does not call rand.Seed to seed the global
 state of math/rand . Without this call, the grpc and forward plugins’ “random” selection of
 upstream servers is likely to be trivially predictable and the same every time CoreDNS is
 restarted.

 Exploit Scenario
 An attacker targets a CoreDNS instance in which the grpc or forward plugin is enabled.
 The attacker exploits the deterministic selection of upstream servers to overwhelm a
 specific server, with the goal of causing a DoS condition or performing an attack such as a
 timing attack.

 Recommendations
 Short term, instantiate a rand.Rand type with a unique seed, rather than drawing random
 numbers from the global math/rand state. CoreDNS takes this approach in several other
 areas, such as the loop plugin .

 Trail of Bits 32 CoreDNS Security Assessment
 PUBLIC

https://github.com/coredns/coredns/blob/7ee128a53da7ca1ee512422b56f31d4a24ed7b8b/plugin/loop/setup.go#L87

 8. Cache plugin does not account for hash table collisions

 Severity: High Difficulty: Undetermined

 Type: Data Validation Finding ID: TOB-CDNS-8

 Target: plugin/cache

 Description
 To cache a DNS reply, CoreDNS maps the FNV-1 hash of the query name and type to the
 content of the reply in a hash table entry.

 func key(qname string , m *dns.Msg, t response.Type) (bool , uint64) {

 // We don't store truncated responses.

 if m.Truncated {

 return false , 0

 }

 // Nor errors or Meta or Update.

 if t == response.OtherError || t == response.Meta || t == response.Update {

 return false , 0

 }

 return true , hash(qname, m.Question[0].Qtype)

 }

 func hash(qname string , qtype uint16) uint64 {

 h := fnv.New64()

 h.Write([] byte { byte (qtype >> 8)})

 h.Write([] byte { byte (qtype)})

 h.Write([] byte (qname))

 return h.Sum64()

 }

 Figure 8.1: plugin/cache/cache.go#L68-L87

 To check whether there is a cached reply for an incoming query, CoreDNS performs a hash
 table lookup for the query name and type. If it identifies a reply with a valid time to live
 (TTL), it returns the reply. CoreDNS assumes the stored DNS reply to be the correct one for
 the query, given the use of a hash table mapping.

 However, this assumption is faulty, as FNV-1 is a non-cryptographic hash function that does
 not offer collision resistance, and there exist utilities for generating colliding inputs to

 Trail of Bits 33 CoreDNS Security Assessment
 PUBLIC

https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function
https://github.com/coredns/coredns/blob/7ee128a53da7ca1ee512422b56f31d4a24ed7b8b/plugin/cache/cache.go#L68-L87
https://github.com/Storyyeller/fnv-collider

 FNV-1 . As a result, it is likely possible to construct a valid (qname , qtype) pair that collides
 with another one, in which case CoreDNS could serve the incorrect cached reply to a client.

 Exploit Scenario
 An attacker aiming to poison the cache of a CoreDNS server generates a valid (qname* ,
 qtype*) pair whose FNV-1 hash collides with a commonly queried (qname , qtype) pair.

 The attacker gains control of the authoritative name server for qname* and points its
 qtype* record to an address of his or her choosing. The attacker also configures the server
 to send a second record when (qname* , qtype*) is queried: a qtype record for qname
 that points to a malicious address.

 The attacker queries the CoreDNS server for (qname* , qtype*) , and the server caches the
 reply with the malicious address. Soon thereafter, when a legitimate user queries the
 server for (qname , qtype) , CoreDNS serves the user the cached reply for (qname* ,
 qtype*) , since it has an identical FNV-1 hash. As a result, the legitimate user’s DNS client
 sees the malicious address as the record for qname .

 Recommendations
 Short term, store the original name and type of a query in the value of a hash table entry.
 After looking up the key for an incoming request in the hash table, verify that the query
 name and type recorded alongside the cached reply match those of the request. If they do
 not, disregard the cached reply.

 Short term, use the keyed hash function SipHash instead of FNV-1. SipHash was designed
 for speed and derives a 64-bit output value from an input value and a 128-bit secret key;
 this method adds pseudorandomness to a hash table key and makes it more difficult for an
 attacker to generate collisions offline. CoreDNS should use the crypto/rand package from
 Go’s standard library to generate a cryptographically random secret key for SipHash on
 startup.

 Trail of Bits 34 CoreDNS Security Assessment
 PUBLIC

https://github.com/Storyyeller/fnv-collider
https://en.wikipedia.org/wiki/SipHash
https://cr.yp.to/siphash/siphash-20120620.pdf
https://cr.yp.to/siphash/siphash-20120620.pdf

 9. Index-out-of-range reference in kubernetes plugin

 Severity: Undetermined Difficulty: Undetermined

 Type: Denial of Service Finding ID: TOB-CDNS-9

 Target: plugin/kubernetes/parse.go#L96

 Description
 The parseRequest function of the kubernetes plugin parses a DNS request before using
 it to query Kubernetes. By fuzzing the function, we discovered an out-of-range issue that
 can cause a panic. The issue occurs when the function calls stripUnderscore with an
 empty string, as it does when it receives a request with the qname “.o.o.po.pod.8” and the
 zone “interwebs”.

 // stripUnderscore removes a prefixed underscore from s.

 func stripUnderscore(s string) string {

 if s[0] != '_' {

 return s

 }

 return s[1 :]

 }

 Figure 9.1: plugin/kubernetes/parse.go#L97

 Because of the time constraints of the audit, we could not find a way to directly exploit this
 vulnerability. Although certain tools for sending DNS queries, like dig and host , verify the
 validity of a host before submitting a DNS query, it may be possible to exploit the
 vulnerability by using custom tooling or DNS over HTTPs (DoH).

 Exploit Scenario
 An attacker finds a way to submit a query with an invalid host (such as “o.o.po.pod.8”) to a
 CoreDNS server running as the DNS server for a Kubernetes endpoint. Because of the
 index-out-of-range bug, the kubernetes plugin causes CoreDNS to panic and crash,
 resulting in a DoS.

 Recommendations
 Short term, to prevent a panic, implement a check of the value of the string passed to the
 stripUnderscore function.

 Trail of Bits 35 CoreDNS Security Assessment
 PUBLIC

https://github.com/coredns/coredns/blob/master/plugin/kubernetes/parse.go#L97

 10. Calls to time.After() in select statements can lead to memory leaks

 Severity: Low Difficulty: High

 Type: Denial of Service Finding ID: TOB-CDNS-10

 Target: Various files

 Description
 Calls to the time.After function in select/case statements within for loops can lead to
 memory leaks. This is because the garbage collector does not clean up the underlying
 Timer object until the timer has fired. A new timer is initialized at the start of each iteration
 of the for loop (and therefore with each select statement), which requires resources. As
 a result, if many routines originate from a time.After call, the system may experience
 memory overconsumption.

 for {

 select {

 case <-ctx.Done():

 log.Debugf("Breaking out of CloudDNS update loop for %v: %v" , h.zoneNames,

 ctx.Err())

 return

 case <-time.After(1 * time.Minute) :

 if err := h.updateZones(ctx); err != nil && ctx.Err() == nil /* Don't log

 error if ctx expired. */ {

 log.Errorf("Failed to update zones %v: %v" , h.zoneNames, err)

 }

 Figure 10.1: A time.After() routine that causes a memory leak
 (plugin/clouddns/clouddns.go#L85-L93)

 The following portions of the code contain similar patterns:

 ● plugin/clouddns/clouddns.go#L85-L93

 ● plugin/azure/azure.go#L87-96

 ● plugin/route53/route53.go#87-96

 Exploit Scenario
 An attacker finds a way to overuse a function, which leads to overconsumption of a
 CoreDNS server’s memory and a crash.

 Trail of Bits 36 CoreDNS Security Assessment
 PUBLIC

http://plugin/clouddns/clouddns.go#L85-L93

 Recommendations
 Short term, use a ticker instead of the time.After function in select/case statements
 included in for loops. This will prevent memory leaks and crashes caused by memory
 exhaustion.

 Long term, avoid using the time.After method in for-select routines and periodically
 use a Semgrep query to detect similar patterns in the code.

 References
 ● DevelopPaper post on the memory leak vulnerability in time.After

 ● “ Golang <-time.After() Is Not Garbage Collected before Expiry ” (Medium post)

 Trail of Bits 37 CoreDNS Security Assessment
 PUBLIC

https://developpaper.com/use-with-caution-time-after-can-cause-memory-leak-golang/
https://medium.com/@oboturov/golang-time-after-is-not-garbage-collected-4cbc94740082

 11. Incomplete list of debugging data exposed by the prometheus plugin

 Severity: Low Difficulty: High

 Type: Data Exposure Finding ID: TOB-CDNS-11

 Target: prometheus plugin

 Description
 Enabling the prometheus (metrics) plugin exposes an HTTP endpoint that lists CoreDNS
 metrics. The documentation for the plugin indicates that it reports data such as the total
 number of queries and the size of responses. However, other data that is reported by the
 plugin (and also available through the pprof plugin) is not listed in the documentation. This
 includes Go runtime debugging information such as the number of running goroutines and
 the duration of Go garbage collection runs. Because this data is not listed in the
 prometheus plugin documentation, operators may initially be unaware of its exposure.
 Moreover, the data could be instrumental in formulating an attack.

 # TYPE go_gc_duration_seconds summary

 go_gc_duration_seconds{quantile="0"} 4.4756e-05

 go_gc_duration_seconds{quantile="0.25"} 6.0522e-05

 go_gc_duration_seconds{quantile="0.5"} 7.1476e-05

 go_gc_duration_seconds{quantile="0.75"} 0.000105802

 go_gc_duration_seconds{quantile="1"} 0.000205775

 go_gc_duration_seconds_sum 0.010425592

 go_gc_duration_seconds_count 123

 # HELP go_goroutines Number of goroutines that currently exist.

 # TYPE go_goroutines gauge

 go_goroutines 18

 # HELP go_info Information about the Go environment.

 # TYPE go_info gauge

 go_info{version="go1.17.3"} 1

 # HELP go_memstats_alloc_bytes Number of bytes allocated and still in use.

 # TYPE go_memstats_alloc_bytes gauge

 Figure 11.1: Examples of the data exposed by prometheus and omitted from the
 documentation

 Exploit Scenario
 An attacker discovers the metrics exposed by CoreDNS over port 9253. The attacker then
 monitors the endpoint to determine the effectiveness of various attacks in crashing the
 server.

 Trail of Bits 38 CoreDNS Security Assessment
 PUBLIC

https://coredns.io/plugins/metrics/

 Recommendations
 Short term, document all data exposed by the prometheus plugin. Additionally, consider
 changing the data exposed by the prometheus plugin to exclude Go runtime data available
 through the pprof plugin.

 Trail of Bits 39 CoreDNS Security Assessment
 PUBLIC

 12. Cloud integrations require cleartext storage of keys in the Corefile

 Severity: Medium Difficulty: High

 Type: Data Exposure Finding ID: TOB-CDNS-12

 Target: route53 , azure , and clouddns

 Description
 The route53 , azure , and clouddns plugins enable CoreDNS to interact with cloud
 providers (AWS, Azure, and the Google Cloud Platform (GCP), respectively). To access
 clouddns , a user enters the path to the file containing his or her GCP credentials. When
 using route53 , CoreDNS pulls the AWS credentials that the user has entered in the
 Corefile. If the AWS credentials are not included in the Corefile, CoreDNS will pull them in
 the same way that the AWS command-line interface (CLI) would. While operators have
 options for the way that they provide AWS and GCP credentials, Azure credentials must be
 pulled directly from the Corefile. Furthermore, the CoreDNS documentation lacks guidance
 on the risks of storing AWS, Azure, or GCP credentials in local configuration files .

 Exploit Scenario
 An attacker or malicious internal user gains access to a server running CoreDNS. The
 malicious actor then locates the Corefile and obtains credentials for a cloud provider,
 thereby gaining access to a cloud infrastructure.

 Recommendations
 Short term, remove support for entering cloud provider credentials in the Corefile in
 cleartext. Instead, load credentials for each provider in the manner recommended in that
 provider’s documentation and implemented by its CLI utility. CoreDNS should also refuse to
 load credential files with overly broad permissions and warn users about the risks of such
 files.

 Trail of Bits 40 CoreDNS Security Assessment
 PUBLIC

 13. Lack of rate-limiting controls

 Severity: Low Difficulty: Medium

 Type: Denial of Service Finding ID: TOB-CDNS-13

 Target: CoreDNS

 Description
 CoreDNS does not enforce rate limiting of DNS queries, including those sent via DoH. As a
 result, we were able to issue the same request thousands of times in less than one minute
 over the HTTP endpoint /dns-query .

 Figure 13.1: We sent 3,424 requests to CoreDNS without being rate limited.

 During our tests, the lack of rate limiting did not appear to affect the application. However,
 processing requests sent at such a high rate can consume an inordinate amount of host
 resources, and a lack of rate limiting can facilitate DoS and DNS amplification attacks.

 Exploit Scenario
 An attacker floods a CoreDNS server with HTTP requests, leading to a DoS condition.

 Trail of Bits 41 CoreDNS Security Assessment
 PUBLIC

 Recommendations
 Short term, consider incorporating the rrl plugin, used for the rate limiting of DNS
 queries, into the CoreDNS codebase. Additionally, implement rate limiting on all API
 endpoints. An upper bound can be applied at a high level to all endpoints exposed by
 CoreDNS.

 Long term, run stress tests to ensure that the rate limiting enforced by CoreDNS is robust.

 Trail of Bits 42 CoreDNS Security Assessment
 PUBLIC

https://github.com/coredns/rrl

 14. Lack of a limit on the size of response bodies

 Severity: Informational Difficulty: High

 Type: Denial of Service Finding ID: TOB-CDNS-14

 Target: plugin/pkg/doh/doh.go#L94-L102

 Description
 The ioutil.ReadAll function reads from a source input until encountering an error or
 the end of the file, at which point it returns the data that it read. The toMsg function, which
 processes requests for the HTTP server, uses ioutil.ReadAll to parse requests and to
 read POST bodies.

 However, there is no limit on the size of request bodies. Using ioutil.ReadAll to parse a
 large request that is loaded multiple times may exhaust the system’s memory, causing a
 DoS.

 func toMsg(r io.ReadCloser) (*dns.Msg, error) {

 buf, err := io.ReadAll(r)

 if err != nil {

 return nil , err

 }

 m := new (dns.Msg)

 err = m.Unpack(buf)

 return m, err

 }

 Figure 14.1: plugin/pkg/doh/doh.go#L94-L102

 Exploit Scenario
 An attacker generates multiple POST requests with long request bodies to /dns-query ,
 leading to the exhaustion of its resources.

 Recommendations
 Short term, use the io.LimitReader function or another mechanism to limit the size of
 request bodies.

 Long term, consider implementing application-wide limits on the size of request bodies to
 prevent DoS attacks.

 Trail of Bits 43 CoreDNS Security Assessment
 PUBLIC

https://github.com/coredns/coredns/blob/7ee128a53da7ca1ee512422b56f31d4a24ed7b8b/plugin/pkg/doh/doh.go#L94-L102
https://pkg.go.dev/io#LimitReader

 15. Index-out-of-range panic in grpc plugin initialization

 Severity: Informational Difficulty: Undetermined

 Type: Denial of Service Finding ID: TOB-CDNS-15

 Target: plugin/grpc/setup.go#59

 Description
 Initializing the grpc plugin involves parsing the relevant configuration section.

 func parseStanza(c *caddy.Controller) (*GRPC, error) {

 g := newGRPC()

 if !c.Args(&g.from) {

 return g, c.ArgErr()

 }

 g.from = plugin.Host(g.from).NormalizeExact()[0] // only the first is used.

 Figure 15.1: plugin/grpc/setup.go#L53-L59

 An invalid configuration file for the grpc plugin could cause the call to NormalizeExtract
 (highlighted in figure 15.1) to return a value with zero elements. A Base64-encoded
 example of such a configuration file is shown below.

 MApncnBjIDAwMDAwMDAwMDAwhK2FhYKtMIStMITY2NnY2dnY7w==

 Figure 15.2: The Base64-encoded grpc configuration file

 Specifying a configuration file like that in figure 15.2 would cause CoreDNS to panic when
 attempting to access the first element of the return value.

 panic: runtime error: index out of range [0] with length 0

 goroutine 1 [running]:

 github.com/coredns/coredns/plugin/grpc.parseStanza(0xc0002f0900)

 /home/ubuntu/audit-coredns/client-code/coredns/plugin/grpc/setup.go:59 +0x31b

 github.com/coredns/coredns/plugin/grpc.parseGRPC(0xc0002f0900)

 /home/ubuntu/audit-coredns/client-code/coredns/plugin/grpc/setup.go:45 +0x5e

 github.com/coredns/coredns/plugin/grpc.setup(0x1e4dcc0)

 /home/ubuntu/audit-coredns/client-code/coredns/plugin/grpc/setup.go:17 +0x30

 github.com/coredns/caddy.executeDirectives(0xc0000e2900, {0x7ffc15b696e0, 0x31}, {0x324cfa0,

 0x31, 0x1000000004b7e06}, {0xc000269300, 0x1, 0x8}, 0x0)

 Trail of Bits 44 CoreDNS Security Assessment
 PUBLIC

https://github.com/coredns/coredns/blob/7ee128a53da7ca1ee512422b56f31d4a24ed7b8b/plugin/grpc/setup.go#L53-L59

 /home/ubuntu/go/pkg/mod/github.com/coredns/caddy@v1.1.1/caddy.go:661 +0x5f6

 github.com/coredns/caddy.ValidateAndExecuteDirectives({0x2239518, 0xc0002b2980},

 0xc0002b2980, 0x0)

 /home/ubuntu/go/pkg/mod/github.com/coredns/caddy@v1.1.1/caddy.go:612 +0x3e5

 github.com/coredns/caddy.startWithListenerFds({0x2239518, 0xc0002b2980}, 0xc0000e2900, 0x0)

 /home/ubuntu/go/pkg/mod/github.com/coredns/caddy@v1.1.1/caddy.go:515 +0x274

 github.com/coredns/caddy.Start({0x2239518, 0xc0002b2980})

 /home/ubuntu/go/pkg/mod/github.com/coredns/caddy@v1.1.1/caddy.go:472 +0xe5

 github.com/coredns/coredns/coremain.Run()

 /home/ubuntu/audit-coredns/client-code/coredns/coremain/run.go:62 +0x1cd

 main.main()

 /home/ubuntu/audit-coredns/client-code/coredns/coredns.go:12 +0x17

 Figure 15.3: CoreDNS panics when loading the grpc configuration.

 Exploit Scenario
 An operator of a CoreDNS server misconfigures the grpc plugin, causing a panic. Because
 CoreDNS does not provide a clear explanation of what went wrong, it is difficult for the
 operator to troubleshoot and fix the issue.

 Recommendations
 Short term, verify that the variable returned by NormalizeExtract has at least one
 element before indexing it.

 Long term, review the codebase for instances in which data is indexed without undergoing
 a length check; handling untrusted data in this way may lead to a more severe DoS.

 Trail of Bits 45 CoreDNS Security Assessment
 PUBLIC

 A. Vulnerability Categories

 The following tables describe the vulnerability categories, severity levels, and difficulty
 levels used in this document.

 Vulnerability Categories

 Category Description

 Access Controls Insufficient authorization or assessment of rights

 Auditing and Logging Insufficient auditing of actions or logging of problems

 Authentication Improper identification of users

 Configuration Misconfigured servers, devices, or software components

 Cryptography A breach of system confidentiality or integrity

 Data Exposure Exposure of sensitive information

 Data Validation Improper reliance on the structure or values of data

 Denial of Service A system failure with an availability impact

 Error Reporting Insecure or insufficient reporting of error conditions

 Patching Use of an outdated software package or library

 Session Management Improper identification of authenticated users

 Testing Insufficient test methodology or test coverage

 Timing Race conditions or other order-of-operations flaws

 Undefined Behavior Undefined behavior triggered within the system

 Trail of Bits 46 CoreDNS Security Assessment
 PUBLIC

 Severity Levels

 Severity Description

 Informational The issue does not pose an immediate risk but is relevant to security best
 practices.

 Undetermined The extent of the risk was not determined during this engagement.

 Low The risk is small or is not one the client has indicated is important.

 Medium User information is at risk; exploitation could pose reputational, legal, or
 moderate financial risks.

 High The flaw could affect numerous users and have serious reputational, legal,
 or financial implications.

 Difficulty Levels

 Difficulty Description

 Undetermined The difficulty of exploitation was not determined during this engagement.

 Low The flaw is well known; public tools for its exploitation exist or can be
 scripted.

 Medium An attacker must write an exploit or will need in-depth knowledge of the
 system.

 High An attacker must have privileged access to the system, may need to know
 complex technical details, or must discover other weaknesses to exploit this
 issue.

 Trail of Bits 47 CoreDNS Security Assessment
 PUBLIC

 B. Anonymous Race Condition Proof of Concept

 Figure B.1 shows a typical anonymous race condition similar to the one described in
 TOB-CDNS-1 .

 The n variable used in the print statement on line 15 will always point to the same
 memory location. However, the values held in that memory location will change. As shown
 in the output in figure B.2, the race condition occurs because the scheduler cannot keep up
 with the changes to those values.

 1 package main

 2

 3 import (

 4 "fmt"

 5 "time"

 6)

 7

 8 func main() {

 9 names := [] string { "one" , "two" , "three" , "four" , "five" , "six" , "seven" , "eight" ,

 "nine" , "ten" }

 10 closures := make ([] func (), 10)

 11

 12 for i, n := range names {

 13 c := func () {

 14 go func () {

 15 fmt.Printf("the name at index %v is %v\n" , i, n)

 16 }()

 17 }

 18 closures[i] = c

 19 }

 20

 21 for _, c := range closures {

 22 c()

 23 }

 24

 25 time.Sleep(3 * time.Second)

 26 }

 Figure B.1: A proof of concept for the anonymous race condition
 (https://go.dev/play/p/VeOjPkWHFHa)

 the name at index 9 is ten

 the name at index 9 is ten

 the name at index 9 is ten

 the name at index 9 is ten

 the name at index 9 is ten

 Trail of Bits 48 CoreDNS Security Assessment
 PUBLIC

https://go.dev/play/p/VeOjPkWHFHa

 the name at index 9 is ten

 the name at index 9 is ten

 the name at index 9 is ten

 the name at index 9 is ten

 the name at index 9 is ten

 Program exited.

 Figure B.2: The output of the goroutine that experiences a race condition

 To solve this issue, create a copy of the values used in the anonymous goroutine, as shown
 in lines 14–15 in the figure below.

 1 package main

 2

 3 import (

 4 "fmt"

 5 "time"

 6)

 7

 8 func main() {

 9 names := [] string { "one" , "two" , "three" , "four" , "five" , "six" , "seven" , "eight" ,

 "nine" , "ten" }

 10 closures := make ([] func (), 10)

 11

 12 for i, n := range names {

 13 // capture the values

 14 i := i

 15 n := n

 16

 17 c := func () {

 18 go func () {

 19 fmt.Printf("the name at index %v is %v\n" , i, n)

 20 }()

 21 }

 22 closures[i] = c

 23 }

 24

 25 for _, c := range closures {

 26 c()

 27 }

 28

 29 time.Sleep(3 * time.Second)

 30 }

 Figure B.3: A fix for the anonymous race condition

 Trail of Bits 49 CoreDNS Security Assessment
 PUBLIC

 C. Fuzzing CoreDNS

 During the audit, Trail of Bits used fuzzing, an automated testing technique in which code
 paths are executed with random data to find bugs resulting from the incorrect handling of
 unexpected data. We used dvyukov/go-fuzz , an in-process coverage-guided fuzzer for
 Golang, to develop fuzzing harnesses for CoreDNS functions. This utility helped us to find
 the issues detailed in TOB-CDNS-3 , TOB-CDNS-4 , TOB-CDNS-9 , and TOB-CDNS-15 .

 We ran the harnesses for a limited period of time. We recommend running them further,
 such as until the fuzzer does not find input generating new coverage for a few hours or
 longer. In such a case, we recommend investigating the coverage of all corpus input that
 the fuzzer generated by creating a small program that executes the fuzzed function with a
 given payload and instrumenting it for code coverage. This could help to find code paths
 that were not executed and to manually craft or modify the corpus to achieve higher
 coverage and find new bugs.

 Fuzzing with dvyukov/go-fuzz 101
 The dvyukov/go-fuzz package provides an AFL -like mutational fuzzing interface, in which
 testing harnesses can be built entirely in Go. This framework is typically used when a library
 implemented in Go parses, interprets, or otherwise interacts with blobs of data. An
 example of such a use case can be seen in figure C.1, in which a harness for the Go
 standard library’s image-processing library is defined.

 package png

 import (
 "bytes"
 "image/png"

)

 func Fuzz (data [] byte) int {
 png. Decode (bytes. NewReader (data))
 return 0

 }

 Figure C.1: An example test harness for png.Decode() , shown in the official go-fuzz README

 In this example, the function Fuzz accepts an array of bytes for data , which is then
 converted into a Reader for the png.Decode function to read from. When Fuzz is
 compiled and invoked, it is executed repeatedly, using data as the input generated for
 each test case execution.

 Optimizing go-fuzz ’s generation of test case input requires an understanding of return
 values. Typically, a panic indicates a crash with a given test case input. However, when no
 crash occurs, but no errors are raised, or errors are raised gracefully, return values can be
 used to help guide go-fuzz to mutate input appropriately.

 Trail of Bits 50 CoreDNS Security Assessment
 PUBLIC

https://github.com/dvyukov/go-fuzz
https://github.com/dvyukov/go-fuzz
https://en.wikipedia.org/wiki/American_fuzzy_lop_(fuzzer)

 ● A return value of 1 indicates the input generator should increase the priority of a
 given input during subsequent fuzzing.

 ● A return value of -1 indicates the input generator should never be added to the
 corpus, despite the added coverage.

 ● In all other cases, the function should return 0 .

 To build and run this example, you must have Go and the go-fuzz package installed. You
 can then navigate to the directory in which the test harness in figure C.1 is stored and
 execute go-fuzz-build (figure C.2). Assuming the harness builds correctly, it will produce
 a ZIP file for use with the go-fuzz executor. To start the fuzzing harness, you can execute
 go-fuzz in the same directory as the ZIP file produced by go-fuzz-build (figure C.3).
 This will create three directories, if they do not already exist.

 user@host:~/Desktop/png_fuzz$ ls
 png_harness.go
 user@host:~/Desktop/png_fuzz$ go-fuzz-build
 user@host:~/Desktop/png_fuzz$ ls
 png-fuzz.zip png_harness.go

 Figure C.2: The generated png-fuzz.zip package used by go-fuzz

 user@host:~/Desktop/png_fuzz$ go-fuzz
 2019/09/14 16:00:37 workers: 2, corpus: 30 (0s ago), crashers: 0, restarts: 1/0, execs: 0
 (0/sec), cover: 0, uptime: 3s
 2019/09/14 16:00:40 workers: 2, corpus: 31 (2s ago), crashers: 0, restarts: 1/0, execs: 0
 (0/sec), cover: 205, uptime: 6s
 2019/09/14 16:00:43 workers: 2, corpus: 31 (5s ago), crashers: 0, restarts: 1/6092, execs:
 48742 (5415/sec), cover: 205, uptime: 9s
 2019/09/14 16:00:46 workers: 2, corpus: 31 (8s ago), crashers: 0, restarts: 1/7829, execs:
 101779 (8481/sec), cover: 205, uptime: 12s
 2019/09/14 16:00:49 workers: 2, corpus: 31 (11s ago), crashers: 0, restarts: 1/8147, execs:
 146656 (9777/sec), cover: 205, uptime: 15s
 2019/09/14 16:00:52 workers: 2, corpus: 31 (14s ago), crashers: 0, restarts: 1/8851, execs:
 203582 (11310/sec), cover: 205, uptime: 18s
 2019/09/14 16:00:55 workers: 2, corpus: 31 (17s ago), crashers: 0, restarts: 1/8950, execs:
 259563 (12360/sec), cover: 205, uptime: 21s
 ̂C2019/09/14 16:00:56 shutting down...

 Figure C.3: The CLI output of running go-fuzz with the png-fuzz.zip package

 The created directories contain suppressions, crashers, and a corpus, respectively (figure
 C.4). The suppressions are used to prevent the same message values from being collected
 every time the fuzzer runs, polluting your crasher samples. The crashers are the program’s
 crashdumps—the STDOUT and STDERR of the program when the test case input causes an
 error. Finally, the corpus directory stores the test case inputs used throughout the test
 harness’s execution. This directory will collect mutated versions of each input as necessary.

 Trail of Bits 51 CoreDNS Security Assessment
 PUBLIC

 user@host:~/Desktop/png_fuzz$ ls -R
 .:
 corpus crashers png-fuzz.zip png_harness.go suppressions

 ./corpus:
 21339f0e4b8b5a8e0cb5471f1f91907d1917be50-6
 215d99d0c7acdec5ad4c5aa8bec96a171b9ffae0-8
 22f545ac6b50163ce39bac49094c3f64e0858403-11
 // (...)

 ./crashers:

 ./suppressions:

 Figure C.4: The directory and file output produced by go-fuzz

 While running the harness on a single machine typically produces good results, go-fuzz
 also supports a clustered mode, allowing test harness execution to scale horizontally
 across an arbitrary number of worker nodes. More information on this functionality can be
 found within the repository’s README.

 Fuzzing CoreDNS Functions
 The harnesses we developed required us to use the data slice to generate input for the
 various fuzzed functions.

 We discovered the issue detailed in TOB-CDNS-9 by using the following harness. A unit test
 that replicates the panic described in that finding is included in figure C.6.

 package kubernetes

 import "github.com/trailofbits/go-fuzz-utils"

 func Fuzz_parseRequest(data [] byte) int {
 type FuzzStructure struct {

 name string
 zone string

 }

 var testStructure FuzzStructure

 tp, err := go_fuzz_utils.NewTypeProvider(data)
 if err != nil {

 return 0
 }

 err = tp.Fill(&testStructure)
 if err != nil {

 return 0
 }

 parseRequest(testStructure.name, testStructure.zone)

 return 0
 }

 Trail of Bits 52 CoreDNS Security Assessment
 PUBLIC

 Figure C.5: A fuzzing harness targeting the parseRequest function of the kubernetes plugin

 func TestCrash(t *testing.T) {
 k := New([] string { "interwebs.test." })
 k.APIConn = &APIConnServiceTest{}

 type svcTest struct {
 qname string
 qtype uint16

 }
 test := svcTest {

 // Cluster IP Service
 qname: ".o.o.po.pod.8" , qtype: dns.TypeA,

 }

 state := request.Request{
 Req: &dns.Msg{Question: []dns.Question{{Name: test.qname, Qtype:

 test.qtype}}},
 Zone: "interwebs" , // must match from k.Zones[0]

 }
 _, _ = k.Services(context.TODO(), state, false , plugin.Options{})

 }

 Figure C.6: A unit test that replicates the panic described in TOB-CDNS-9

 Trail of Bits 53 CoreDNS Security Assessment
 PUBLIC

 D. Rapid Risk Assessment Template

 This appendix provides a template for a Rapid Risk Assessment meant to complement and
 extend the threat model presented in this report. Refer to the Mozilla documentation for
 additional guidance on conducting this type of assessment.

 Overview
 ● Component:

 ● Owner(s):

 ● SIG/WG(s) at Meeting:

 ● Service Data Classification:

 ● Highest Risk Impact:

 Service Notes
 This section should walk through the components, describe the connections between the
 components and their relevant controls, and explain how the components fulfill their roles.
 This section can also include questions about the components. For example, with a
 component that accepts an HTTP connection, there may be questions about channel
 security (TLS and cryptography), authentication, authorization, non-repudiation/auditing,
 and logging. These questions are meant to guide discussions and to keep meetings and
 calls on track but should not be the only drivers of discussions. Examples are provided
 below.

 ● How does the service work?

 ● Are there any subcomponents or shared boundaries?

 ● What communication protocols does it use?

 ● Where does it store data?

 ● What is the most sensitive data it stores?

 ● How is that data stored?

 Data Dictionary

 Data Dictionary

 Category Description Comments

 Data

 Trail of Bits 54 CoreDNS Security Assessment
 PUBLIC

 Control Families
 These areas of control are chosen by the audit working group.

 In this context, a “control” is a logical section of an application or system that handles a
 security requirement. According to CNSSI,

 The management, operational, and technical controls (i.e., safeguards or
 countermeasures) prescribed for an information system to protect the
 confidentiality, integrity, and availability of the system and its information.

 For example, a system may have authorization requirements such as the following:

 ● Users must be registered with a central authority.

 ● Every request must be verified to be owned by the user who issued it.

 ● Each user account must have unique attributes that can identify the user.

 In this assessment, we are looking at five basic control families:

 ● Networking

 ● Cryptography

 ● Secret Management

 ● Authentication

 ● Authorization (Access Controls)

 Obviously, we can consider a control family to be “not applicable” if a component does not
 require it. For example, a component with the sole purpose of interacting with the local file
 system may not have a meaningful networking component. If a control family is simply not
 applicable, it is not considered a weakness.

 For each control family, we want to ask the following:

 ● What does the component do for this control?

 ● What sorts of data pass through that control?

 ○ For example, a component may have sensitive data (secret management)
 that never leaves the component's storage via networking.

 ● What can an attacker do with access to this component?

 ● What is the simplest way to attack it?

 ● Are there any safeguards that we recommend (e.g., “Always use an interstitial
 firewall”)?

 Trail of Bits 55 CoreDNS Security Assessment
 PUBLIC

 ● What happens if the component stops working (because of a DoS or another
 condition)?

 ● Have there been similar attacks in the past? What were the mitigations?

 Threat Scenarios
 Identify potential attack scenarios, considering the current state of the system being tested
 and the responses to the previous sections of this template.

 ● An external attacker without access to the client application

 ○ Attack scenario #1

 ○ Attack scenario #2

 Trail of Bits 56 CoreDNS Security Assessment
 PUBLIC

