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A Brief Origin Story



AI Cyber Challenge (AIxCC)
AIxCC is a competition to design a novel automated AI system (CRS) that can 
find and patch bugs in real-world open-source software.

Spring ‘24 Summer ‘24
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Buttercup’s Design



Our Approach
Guiding Principles

● Conventional software analysis works really well for certain problems. 
● AI/ML-based analysis works really well for certain problems.
● Often, one approach works well where the other does not.

Break the problem down, use the best technique to solve each sub-problem. 
Don’t expect LLMs to do things they aren’t good at!



Problem Breakdown
1) Discover / prove existence of vulnerabilities
2) Contextualize vulnerabilities
3) Create and Validate patches
4) Orchestrate these tasks to:

a) Effectively allocate resources
b) Maximize score



CRS Architecture (Concept Paper)
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Buttercup in the Semifinals







Performance by CWE type



Buttercup 2.0



Lessons Learned from semi-finals:

● Validated our overall approach
● Need better testing / handling of Java challenges
● CWE-type specific seed-generation may have helped

Rule changes for finals:

● Massive scale and budget (time, compute, and AI) increases
● Several exhibition rounds
● More complex scoring (SARIFs, bundles, duplication penalties)
● Custom AI/ML models allowed

How did Buttercup evolve for the finals?



Building Buttercup 2.0
Buttercup 2.0 is essentially a from-scratch rebuild. 

Driven by need for:

● more technically complex analysis components 
● ability to easily change scale / cost of deployment for various rounds 
● high degree of reliability and robustness to errors

Still, our high-level Buttercup remained the same as the semi-finals



CRS Architecture (Competition)
Buttercup



Buttercup 2.0 Technical Details



Orchestration - Submission Processing

Filter

Vulnerability discovery 
produces many PoVs - 
filter stack traces already 
seen

Group by stacktrace

Group PoVs with similar 
stack traces - examples  
of the same underlying  
vulnerability.

Group by patch

Group PoVs remediated 
by the same patch - 
same underlying 
vulnerability

Monitor

As new PoVs come in 
merge by fuzzy stack 
match and patches. 
Rebuild bundles as 
needed.

PoV - Proof of Vulnerability



Vulnerability Discovery
● Strategy: Combine fuzzing and LLM input generation
● Use standard OSS-Fuzz fuzzers:

○ LibFuzzer for C/C++
○ Jazzer for Java

● Fuzzer bots sample active harnesses to run short fuzz campaigns
● Fuzzing corpus:

○ Merger bots merge a fuzzer bot’s local corpus to the shared corpus
○ LLM input generation also submits to the corpus



Vulnerability Discovery: LLM “seed-gen”
Design

● Several tasks that use LLMs to create seeds and/or PoVs
● All tasks use tools to collect context from the codebase before generating inputs

Goal 1: Support Fuzzing Goal 2: Independently Find Bugs

● Init task: Bootstrap fuzzer with initial 
seed inputs that exercise harness

● Explore task: Increase coverage for a 
target function

● Vuln discovery task: Identify and validate 
vulnerabilities in target to create PoVs

○ Most expensive task to thoroughly 
explore code and test hypotheses



Contextualization

● Constructs program model 

using CodeQuery + Tree-sitter

● Supports querying program 

properties (functions & types)

● Called by LLMs from Seed 

Generator and Patcher using 

LangGraph’s Tool library



● LLM-based multi-agent system
○ Software, Security, and Quality Engineer Agents working together

● Programmatic agents hand-off
○ Data flow between agent is (mostly) deterministic
○ More control over the process
○ Error handling relies on LLMs to determine resolution steps

● Implementation
○ Less than 6K LOC, Python
○ LangChain/LangGraph
○ Preferred model: OpenAI/GPT-4.1

Patcher



Patcher: flow 



Patcher: patch creation

Code Snippet
Identifier: <identifier>
File Path: <file-path>
Start/End Lines: <start>/<end>
Code:
<existing-code>

LLM

Code Snippet
Identifier: <identifier>
File Path: <file-path>
Old Code:
<existing-code>
New Code:
<modified-code>



Buttercup in the Finals



Buttercup was the best performing CRS in Round 1:

● Found and patched a vulnerability in both challenges with 100% accuracy
● Used only ~$1000 of available $30,000 budget

But we crashed hard in Round 2:

● Issue with filename length in vulnerability discovery component
● Caused a hard failure after only 3/18 challenges were processed
● We later reproduced Round 2 and Buttercup was successful on all challenges

And bounced back in Round 3:

● Buttercup found and/or patched vulnerabilities in 20/26 challenges!

How did Buttercup do in Exhibition Rounds?



Buttercup came in second place, winning $3 million!

● Found 28 vulnerabilities, patched 19
● Used only ~$40,000 of available budget
● ~90% Accuracy
● Found at least one PoV no one else did
● Found at least one non-synthetic vulnerability

Keys to success:

● Accuracy
● Scoring well across all tasks

How did Buttercup do in the scored round?



I want to try Buttercup!



You’re in Luck….
Buttercup is Open Source!

The exact code we submitted for the semi-finals and finals code is available on 
our company github organization!

● Buttercup 1.0 https://github.com/trailofbits/asc-buttercup
● Buttercup 2.0 https://github.com/trailofbits/afc-buttercup

Fair warning: Buttercup was designed to run on competition infrastructure and at 
massive scale, so this version of Buttercup isn’t terribly user friendly…

https://github.com/trailofbits/asc-buttercup


And we’ll do you one better!
A standalone variant of Buttercup is also available!

We’ve also created a version of Buttercup that runs on commodity (laptop) and 
typical server-grade hardware. You can check it out at: 

● Buttercup standalone https://github.com/trailofbits/buttercup

Enjoy!

https://github.com/trailofbits/buttercup


Thanks for Coming!


