
Buckle Up, Buttercup: Our
Experience Competing in the AI
Cyber Challenge
9 August 2025

Our Team

Michael D. Brown
Overall Team Lead

Lead Designer of Buttercup

Ian Smith
Vuln Discovery Lead

Co-Designer of Buttercup

Ronald Eytchison
AI-Based Seed Generation Lead

Our Team

Henrik Brodin
Orchestration Lead

(Finals)

Eric Kilmer
Orchestration Co-Lead

(Semi-Finals)

Francesco Bertolaccini
Orchestration Co-Lead

(Semi-Finals)

Our Team

Riccardo Schirrone
Patcher Lead

Evan Downing
Contextualization Lead

Boyan Milanov
System Developer

Our Team

Alessandro Gario
Challenge Creator

(Internal Red Team)

Brad Swain
Challenge Creator

(Internal Red Team)

Our Team

Will Tan
Systems Developer

(Semi-finals)

Alan Cao
Systems Developer

(Semi-finals)

Akshay Kumar
Challenge Creation

(Semi-finals)

A Brief Origin Story

AI Cyber Challenge (AIxCC)
AIxCC is a competition to design a novel automated AI system (CRS) that can
find and patch bugs in real-world open-source software.

Spring ‘24 Summer ‘24

AIxCC Competition Structure

CRS Code

CRS Infrastructure

Internet

AIxCC API

LLMs

CP 1

CP …

CP 2

CP n

CP 3

CP 1

CP …

CP 2

CP n

CP 3

CRS Code

CRS Infrastructure

Internet

AIxCC API

(1) Vuln

(2) Points

AIxCC Competition Structure

LLMs

CRS Code

CRS Infrastructure

Internet

AIxCC API

(3) Patch

(4) Points

AIxCC Competition Structure

LLMs

CP 1

CP …

CP 2

CP n

CP 3

Buttercup’s Design

Our Approach
Guiding Principles

● Conventional software analysis works really well for certain problems.
● AI/ML-based analysis works really well for certain problems.
● Often, one approach works well where the other does not.

Break the problem down, use the best technique to solve each sub-problem.
Don’t expect LLMs to do things they aren’t good at!

Problem Breakdown
1) Discover / prove existence of vulnerabilities
2) Contextualize vulnerabilities
3) Create and Validate patches
4) Orchestrate these tasks to:

a) Effectively allocate resources
b) Maximize score

CRS Architecture (Concept Paper)
Buttercup

CRS Architecture

ID the
BIC

Buttercup

CRS Architecture (Competition)
Buttercup

Buttercup in the Semifinals

Performance by CWE type

Buttercup 2.0

Lessons Learned from semi-finals:

● Validated our overall approach
● Need better testing / handling of Java challenges
● CWE-type specific seed-generation may have helped

Rule changes for finals:

● Massive scale and budget (time, compute, and AI) increases
● Several exhibition rounds
● More complex scoring (SARIFs, bundles, duplication penalties)
● Custom AI/ML models allowed

How did Buttercup evolve for the finals?

Building Buttercup 2.0
Buttercup 2.0 is essentially a from-scratch rebuild.

Driven by need for:

● more technically complex analysis components
● ability to easily change scale / cost of deployment for various rounds
● high degree of reliability and robustness to errors

Still, our high-level Buttercup remained the same as the semi-finals

CRS Architecture (Competition)
Buttercup

Buttercup 2.0 Technical Details

Orchestration - Submission Processing

Filter

Vulnerability discovery
produces many PoVs -
filter stack traces already
seen

Group by stacktrace

Group PoVs with similar
stack traces - examples
of the same underlying
vulnerability.

Group by patch

Group PoVs remediated
by the same patch -
same underlying
vulnerability

Monitor

As new PoVs come in
merge by fuzzy stack
match and patches.
Rebuild bundles as
needed.

PoV - Proof of Vulnerability

Vulnerability Discovery
● Strategy: Combine fuzzing and LLM input generation
● Use standard OSS-Fuzz fuzzers:

○ LibFuzzer for C/C++
○ Jazzer for Java

● Fuzzer bots sample active harnesses to run short fuzz campaigns
● Fuzzing corpus:

○ Merger bots merge a fuzzer bot’s local corpus to the shared corpus
○ LLM input generation also submits to the corpus

Vulnerability Discovery: LLM “seed-gen”
Design

● Several tasks that use LLMs to create seeds and/or PoVs
● All tasks use tools to collect context from the codebase before generating inputs

Goal 1: Support Fuzzing Goal 2: Independently Find Bugs

● Init task: Bootstrap fuzzer with initial
seed inputs that exercise harness

● Explore task: Increase coverage for a
target function

● Vuln discovery task: Identify and validate
vulnerabilities in target to create PoVs

○ Most expensive task to thoroughly
explore code and test hypotheses

Contextualization

● Constructs program model

using CodeQuery + Tree-sitter

● Supports querying program

properties (functions & types)

● Called by LLMs from Seed

Generator and Patcher using

LangGraph’s Tool library

● LLM-based multi-agent system
○ Software, Security, and Quality Engineer Agents working together

● Programmatic agents hand-off
○ Data flow between agent is (mostly) deterministic
○ More control over the process
○ Error handling relies on LLMs to determine resolution steps

● Implementation
○ Less than 6K LOC, Python
○ LangChain/LangGraph
○ Preferred model: OpenAI/GPT-4.1

Patcher

Patcher: flow

Patcher: patch creation

Code Snippet
Identifier: <identifier>
File Path: <file-path>
Start/End Lines: <start>/<end>
Code:
<existing-code>

LLM

Code Snippet
Identifier: <identifier>
File Path: <file-path>
Old Code:
<existing-code>
New Code:
<modified-code>

Buttercup in the Finals

Buttercup was the best performing CRS in Round 1:

● Found and patched a vulnerability in both challenges with 100% accuracy
● Used only ~$1000 of available $30,000 budget

But we crashed hard in Round 2:

● Issue with filename length in vulnerability discovery component
● Caused a hard failure after only 3/18 challenges were processed
● We later reproduced Round 2 and Buttercup was successful on all challenges

And bounced back in Round 3:

● Buttercup found and/or patched vulnerabilities in 20/26 challenges!

How did Buttercup do in Exhibition Rounds?

Buttercup came in second place, winning $3 million!

● Found 28 vulnerabilities, patched 19
● Used only ~$40,000 of available budget
● ~90% Accuracy
● Found at least one PoV no one else did
● Found at least one non-synthetic vulnerability

Keys to success:

● Accuracy
● Scoring well across all tasks

How did Buttercup do in the scored round?

I want to try Buttercup!

You’re in Luck….
Buttercup is Open Source!

The exact code we submitted for the semi-finals and finals code is available on
our company github organization!

● Buttercup 1.0 https://github.com/trailofbits/asc-buttercup
● Buttercup 2.0 https://github.com/trailofbits/afc-buttercup

Fair warning: Buttercup was designed to run on competition infrastructure and at
massive scale, so this version of Buttercup isn’t terribly user friendly…

https://github.com/trailofbits/asc-buttercup

And we’ll do you one better!
A standalone variant of Buttercup is also available!

We’ve also created a version of Buttercup that runs on commodity (laptop) and
typical server-grade hardware. You can check it out at:

● Buttercup standalone https://github.com/trailofbits/buttercup

Enjoy!

https://github.com/trailofbits/buttercup

Thanks for Coming!

