RSKj

Security Assessment
November 13, 2017

Prepared For:
RSK Labs

Prepared By:

Josselin Feist | Trail of Bits
josselin@trailofbits.com

Evan Sultanik | Trail of Bits
evan.sultanik@trailofbits.com

Changelog
November 13, 2017: Initial report delivered
November 30, 2017: Added Appendix F with retest results

December 4, 2017: Updated Appendix F with notes about EIP 161

https://www.trailofbits.com/contact/
https://www.trailofbits.com/contact/

Executive Summary

Project Dashboard

Goals

Coverage

Recommendations Summary
Short Term

Long Term

Findings Summary
1. Resource Leaks in Trie
. Headers Not Properly Deleted in the BlockStore
. Infinite Loop in Ethereum] Key Verification
. Integrate Infer into the RSKj Build Process
. Erroneous Gas Computation in CALL Breaks Sending Ether to a Contract
. Wrong msg.value Parameter in CREATE Leads to a Broken Contract
. Duplicated Logs May Lead to Misinterpreted Events
. Incorrect Gas Computation in Modexp
. Missing Implementation of EIPs May Lead to Denial of Service

O [00 N[O U1 [W N

10. Incorrect Encoding Implementation Leads to Wrong RLP Encoding

A. Vulnerability Classifications

B. SpotBugs Documentation

C. Coding Practices

D. Test cases

E. Exploitable Smart Contracts
TOB-RSK-005
TOB-RSK-006

F. Fix Log
About Trail of Bits

© 2017 Trail of Bits RSKj Security Assessment |2

Executive Summary

RSK engaged Trail of Bits to perform an audit of RSKj, its solution for providing smart
contracts using the Bitcoin cryptocurrency. Two Trail of Bits researchers performed the
assessment from October 23rd through November 10th, 2017. The engagement was
conducted as a source code review focusing on smart contract issues related to the virtual
machine, virtual machine compatibility with other Ethereum implementations, correctness
of the Trie data structure, and correctness of the precompiled contracts for the two-way
peg. RSK also expressed concern about general susceptibility to denial of service attacks.

Trail of Bits completed the assessment using static and dynamic analysis techniques over a
period of three calendar weeks. During the first week, Trail of Bits gained an understanding
of the VM architecture and how to interact with and test its implementation. During the
second week, Trail of Bits reviewed the correctness of the EVM opcode implementations,
their gas consumption, and the Trie data structure implementation. For the last week, Trail
of Bits continued the analysis of EVM opcode implementations, attempted to break the
virtual machine through exceptions, and audited the precompiled smart contracts,
including the two-way peg bridge.

The assessment identified a variety of issues in RSKj, including two high-severity findings in
the EVM implementation. These issues would allow an attacker to craft smart contracts that
are secure in Ethereum, but contain a backdoor when run in RSKj. As a result, an attacker
could fool users and steal ether. As these issues are all related to the EVM implementation,
we expect that similar issues may be present. Also, we report less-severe vulnerabilities
related to the EVM implementation and possible denial of service due to memory leaks
caused by improper resource management.

We discovered several concurrency issues where guarded variables are manipulated
without proper lock synchronization. Furthermore, the code contains several common Java
errors such as using primitive arrays as map keys and classes that override equals but not
hashCode. These code quality issues and others like them may lead to the introduction of
future vulnerabilities, discussed in Appendix C. Therefore, Trail of Bits recommends that
RSK consider these issues and enforce coding standards to eliminate them.

The discovered vulnerabilities and the current state of the platform are as expected. RSKj is
a complex system that integrates and extends several disparate technologies. Like any
complex system, a multitude of corner cases must be handled properly in order to avoid
potential bugs. An effort has been made to address specific areas of concern, such as
integer overflows in gas computation. Further efforts are required to properly protect RSK]j
against other attack vectors. RSKj should correct the identified vulnerabilities, follow strict
coding rules, and anticipate future vulnerability discovery by adding thorough unit tests.

© 2017 Trail of Bits RSKj Security Assessment |3

Project Dashboard

Application Summary

Name RSKj

Version 4cb1492b

Type Smart Contract Platform
Platform Java

Engagement Summary

Dates October 23 - November 10, 2017
Method Whitebox
Consultants Engaged 2

Level of Effort

6 person-weeks

Vulnerability Summary

Total High Severity Issues 2 L
Total Medium Severity Issues 3 EEE
Total Informational Severity Issues 2 LY
Total Undetermined Severity Issues 3 |mEm
Total |10
Category Breakdown
Denial of Service 6 EEEEEN
EVM incompatibility 3 |mEm
Data Validation 1
Total |10

© 2017 Trail of Bits

RSKj Security Assessment |4

https://github.com/rsksmart/rskj/commit/4cb1492bf044ba465b672136706086d3f2472678

Goals

The goal of the engagement was to evaluate the security of RSKj with a particular focus on
potential denial of service vulnerabilities and errors in the EVM implementation.

Specifically, we sought answers to the following questions:

e Bitcoin SPV proofs: Are the merge-mining implementation and SPV proof
verification correct? Two nodes should not disagree on the sequence of blocks in the
blockchain.

e Bridge: Is the pre-compiled smart contract that implements the two-way peg
correct? Malicious RSK contracts can interact with the Bridge to exploit denial of
service or logical flaws that lead to incorrect accounting of ether or gas.

e Consensus: Is RSKj correctly handling block and signature validation? A miner could
abuse consensus to receive more reward than intended.

e EVM Compatibility: Is the Ethereum EVM specification correctly followed? RSK]
should execute contracts in the same manner as other Ethereum implementations.
Inconsistencies may be exploited to cause denial of service or loss of ether.

e JSON RPC: Are the remote procedure calls to modules secure? Remote attackers
may seek to abuse these interfaces to cause denial of service or execute commands
without authorization.

e Trie Implementation: Is RSKj's Trie implementation correct? An adversary might be
able to cause a block that exercises the Trie's worst case computational complexity,
thus creating a denial of service.

© 2017 Trail of Bits RSKj Security Assessment |5

Coverage

EVM compatibility. We analyzed the EVM implementation for errors in instruction
execution and in gas consumption. We looked for arithmetic issues (e.g., integer overflows),
incorrect exception handling, and errors in the logic of the instructions. This area of
concern was one of our primary targets. We found a number of severe vulnerabilities.

General DoS Attacks. RSK asked us to focus on denial of service issues. For that reason,
we identified the six specific categories of bugs that are most likely to result in such a
vulnerability:

Denial of Service Bug Examples of What We Looked For Number
Discovered

Livelock Infinite loops 1

Deadlock Mutex locking and concurrency issues o'

Memory Exhaustion Memory leaks and incorrect resource cleanup 2

Algorithmic Complexity | Forcing hash collisions in data structure 0
lookups

EVM Bugs Contract operations that perform computation 2
that is not commensurate with their gas cost

Data Corruption Operations that can corrupt the node’s internal 1
state, causing it to be inoperable

T We found several instances of methods that could overwrite guarded variables without a
lock on their associated mutex. However, we could not exploit these bugs.

Trie Implementation. We analyzed the Trie data structure for both logical errors and
potential denial of service attacks (e.g., algorithmic complexity vulnerabilities such as hash
collision attacks), but were unable to discover any. Since the TrieStore holds serialized
copies of Tries, we checked if there were any instances of unnecessary saving to the
TrieStore, which would impose a significant memory overhead. All usage of the TrieStore
appeared to be correct.

Due to time constraints, we did not cover the potential of a malicious or non-compliant
miner. Further, RSK provided guidance that investigation into the RSKj wallet was a low
priority. It was only briefly reviewed. The other areas of concern were either analyzed with
a lower priority or were not reviewed.

© 2017 Trail of Bits RSKj Security Assessment |6

Recommendations Summary

Short Term

Remove the memory leaks in the Trie. Close the input streams used in the Trie. This
prevents a potential memory leak that could lead to denial of service.

Properly delete cached headers in the BlockStore. Use the correct arguments in the
remove function. This resolves a memory leak that could potentially cause a denial of
service or, worse yet, incorrect headers being returned.

Fix the erroneous EVM instruction implementations. Fix the CALL gas computation, use
the correct value supplied to the CREATE instruction, and remove the duplicate log entries.
The current CALL gas computation and CREATE instruction can be used to introduce
backdoors in smart contracts. The duplicated log entries can cause a misinterpretation of
events.

Fix the erroneous RLP encoding. Fix the encoding function or remove it if it is never used.
This has the potential to corrupt internal state and deny service to users.

Implement the missing Ethereum Improvement Proposals (EIPs). Implement EIPs 160,
161, and 170. These serve to thwart denial of service attacks.

Remove or fix the ECKey.verify function. This function will cause an infinite recursion

and ultimately a stack overflow exception. At a minimum, this code should be commented
out because a future refactor or addition to the code might exercise it.

© 2017 Trail of Bits RSKj Security Assessment |7

Long Term

Keep RSKj up to date with Ethereum). RSK]j is based on a fork of Ethereum). Ensure that
bugfixes and improvements made upstream are incorporated into RSKj on a timely basis.

Consider sponsoring development of the Ethereum] library. Ethereum] is a critical
component of the RSKj solution. RSKj stands to benefit if consistent coding standards and
security improvements are adopted by Ethereum).

Document the EIPs implemented in RSKj. Ethereum is in constant evolution. Explicitly
document which versions of the Ethereum specification RSKj has implemented, along with
any deviations or incompatibilities with the specification.

Maintain syntactic consistency with the Yellow Paper and EIPs. Wherever possible, use
similar variable names and code structure to match the specification that is being
implemented. This will make deviations from the specification easier to identify.

Integrate static analysis tools and source code linters into the build process. Tools like
Infer and Spotbugs can automatically detect many common errors at build time. Infer
produces few false positives, and should be set to fail the build when errors are detected.

Use a differential fuzzer and improve the test coverage for the EVM instructions.
Issues were found due to erroneous implementations of the Yellow Paper. Consider
building a differential fuzzer to compare the executions of smart contracts on RSKj versus
other Ethereum clients.

© 2017 Trail of Bits RSKj Security Assessment |8

Findings Summary

| Title

Type

Severity

1 Resource Leaks in Trie

Denial of Service

Undetermined

2 Headers Not Properly Deleted in the
BlockStore

Denial of Service

Undetermined

3 Infinite Loop in Ethereum| Key
Verification

Denial of Service

Informational

4 Integrate Infer into the RSKj Build

Denial of Service

Informational

Process

5 | Erroneous Gas Computation in CALL EVM High
Breaks Sending Ether to a Contract incompatibility

6 | Wrong msg.value Parameter in CREATE | EVM High
Leads to a Broken Contract incompatibility

7 | Duplicated Logs May Lead to EVM Medium
Misinterpreted Events incompatibility

8 | Incorrect Gas Computation in Modexp | Denial of Service Medium

9 | Missing Implementation of EIPs May Denial of Service Medium

Lead to Denial of Service

10 | Incorrect Encoding Implementation
Leads to Wrong RLP Encoding

Data Validation

Undetermined

© 2017 Trail of Bits

RSKj Security Assessment |9

1. Resource Leaks in Trie

Severity: Undetermined Difficulty: Low
Type: Denial of Service Finding ID: TOB-RSK-001
Target: Trielmpl

Description
The DatalnputStreams used in message parsing (line 204 of Trielmpl.java),

ByteArrayInputStream bstream = new ByteArrayInputStream(message,
position, msglength);
DataInputStream istream = new DataInputStream(bstream);

deserialization (line 712),

ByteArrayInputStream bstream = new ByteArrayInputStream(bytes);
DataInputStream dstream = new DataInputStream(bstream);

and getSerializedNodeLength (line 788)

ByteArrayInputStream bstream = new ByteArrayInputStream(bytes, offset,
SERIALIZATION_HEADER_LENGTH);
DatalnputStream dstream = new DatalnputStream(bstream);

are never closed. Java requires that input streams be manually closed in order for their
resources to be released and garbage collected. The severity of this flaw is “undetermined”
because it would require a significant amount of effort to quantify the number of bytes that
are leaked per message sent, if any. ByteArrayInputStreams do not require a call to close,
but it is generally good practice to do so.

Exploit Scenario
The memory resources of the DataInputStreams may accumulate over time, even through
normal, non-malicious use. However, an attacker can exacerbate this bug by causing the

Trie to process more and/or larger inputs.

Recommendation
Wrap all usages of Java IOStreams in a try/finally block:

DataInputStream dstream = new DataInputStream(bstream);
try {

} finally {

© 2017 Trail of Bits RSKj Security Assessment |10

dstream.close();
bstream.close();

Alternatively, you can use the try-with-resources syntax introduced in Java 7:
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html

© 2017 Trail of Bits RSKj Security Assessment |11

https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html

2. Headers Not Properly Deleted in the BlockStore

Severity: Undetermined Difficulty: Low
Type: Denial of Service Finding ID: TOB-RSK-002
Target: BlockStore

Description

In co.rsk.net.BlockStore, the function calls to headersbynumber.remove(...) and
headersbyparent.remove(...) are expecting a Long, but in two instances within BlockStore
are instead passed a Set. This will not cause an exception; it will silently fail to remove
anything from the headersbynumber and headersbyparent maps. At best, this will just
cause a memory leak. At worst, there might be a scenario in which old headers that were
thought to have been removed could be erroneously retrieved later.

The offending lines in BlockStore.java are 240 and 248.

Set<ByteArrayWrapper> byNumber = this.headersbynumber.get(nkey);
if (byNumber != null) {
byNumber.remove(key) ;
if (byNumber.isEmpty()) {
this.headersbynumber.remove (byNumber); <=

Set<ByteArrayWrapper> byParent = this.headersbyparent.get(pkey);
if (byParent != null) {
byParent.remove(key);
if (byParent.isEmpty()) {
this.headersbyparent.remove(byParent); <=

Exploit Scenario

An attacker causes a significant number of blocks to be stored in the BlockStore. This
induces a memory exhaustion denial of service. Trail of Bits has not evaluated whether
such an attack vector is possible, since doing so would require a significant amount of
effort and this bug is trivially fixable. Therefore, the severity of this bug has been classified
“undetermined.”

Recommendation
Replace the arguments to remove() with nkey and pkey, respectively.

© 2017 Trail of Bits RSKj Security Assessment |12

3. Infinite Loop in Ethereum] Key Verification

Severity: Informational Difficulty: Low
Type: Denial of Service Finding ID: TOB-RSK-003
Target: ECKey

Description

There are several overloads of the verify(...) function in org.ethereum. crypto.ECKey.
The overload on line 697 with three byte array arguments will always recursively call itself
with no modification to the arguments:

public static boolean verify(byte[] data, byte[] signature, byte[] pub) {
return verify(data, signature, pub);

Calling this function will always result in an infinite recursion.

This erroneous function is called from the two argument overload on line 709. However,
that version does not appear to be called from RSKj.

Exploit Scenario
If either of the aforementioned overloads of verify(...) are ever used within RSKj, it will
cause an infinite loop resulting in a stack overflow exception.

Recommendation
In the short term, it should be safe to comment out those two overloads, since they do not
appear to be used within ethereumj or RSK;.

Note that this issue has been fixed in the latest version of Ethereum|].
Ultimately, RSKj should pull in the latest changes from Ethereum). Ethereum]’s fix uses the

function decodeFromDER (ECKey.java#L632) which is missing in RSKj|, though, so this may
not be a trivial upgrade.

© 2017 Trail of Bits RSKj Security Assessment |13

https://github.com/ethereum/ethereumj/blob/9d1fdaa954c1710a0a0f890d6b2294cce54fd29c/ethereumj-core/src/main/java/org/ethereum/crypto/ECKey.java#L986-L988
https://github.com/ethereum/ethereumj/blob/9d1fdaa954c1710a0a0f890d6b2294cce54fd29c/ethereumj-core/src/main/java/org/ethereum/crypto/ECKey.java#L632

4. Integrate Infer into the RSKj Build Process

Severity: Informational Difficulty: N/A
Type: Denial of Service Finding ID: TOB-RSK-004
Description

Infer can automatically detect null pointer exceptions, resource leaks, and certain types of
concurrency and locking issues that can lead to the types of attack vectors which concern
RSK. For example, deadlocks due to synchronization and mutex locking issues are difficult
to test for in unit tests, since they often require specifically timed inputs that are hard to
reproduce. Infer can catch many types of these bugs.

Exploit Scenario

An attacker submits multiple messages to the node, inducing a deadlock due to incorrect
mutex locking, thus causing a denial of service. Infer can be used to preemptively detect
such concurrency issues.

Recommendation
Run Infer and fix all the bugs that it reports.

Long term, integrate Infer into the build process and fail the build when it finds a bug. Infer
is available as a Gradle plugin and can be added to rskj-core/build.gradle.

© 2017 Trail of Bits RSKj Security Assessment |14

http://fbinfer.com/
https://github.com/uber-common/infer-plugin

5. Erroneous Gas Computation in CALL Breaks Sending Ether to a Contract

Severity: High Difficulty: Easy
Type: EVM incompatibility Finding ID: TOB-RSK-005
Description

During a call to another contract, an amount of gas should be provided to the callee.

The gas computation of CALL in RSKJ does not follow the yellow paper specification. In
particular, it does not transfer the minimum required amount of gas during the transfer of
ethers. As a result, it is not possible to send ethers to a contract.

As a consequence:
e An attacker can take advantage of this difference to create a smart contract which
would be secure in ethereum but would be malicious in RSK.
e The bug can be triggered accidentally by RSK users, leading to unintended
outcomes, such as trapped ether.
e If RSK] allows another client to connect to the blockchain, the execution of the smart
contract may lead to a different result, leading to a possible fork of the blockchain.

The Yellow Paper specifies that a call containing a non-zero msg.value supplies a minimum
of a “stipend” amount of gas (2300) to the callee.

0xfl CALL 7 1 Message-call into an account.
$= i3] (1 [3] + 2, [4] — 1))
O(e, Lo, Io,1,t, if g [2] € ofla]s A
(o', ¢ AT 0) = Cearrcas(p), Ip, 15 (2], (2] 1, e + 1) Lo <1024
(,9,9,0) otherwise

n = min{s, (6], |ol})

ol [5] - - (11a]5] - —)] = 0[0... (n — 1)]

My =p, +4

W0 ="z

A'=AuwAat

t= p[1] mod 2'%°

where x = 0 if the code execution for this operation failed due to an exceptional halting
Zlo,p,I) =T orif

pg[2] > ollals (not enough funds) or I. = 1024 (call depth limit reached); z =1
otherwise.

i = M (M (g, g, [3], p[4]). 1, [5], 1, [6])

Thus the operand order is: gas, to, value, in offset, in size, out offset, out size.
O('.‘Al.].m‘/) E&Asc.&&.#) +_Ck_:x J‘I{.ﬁ‘ N) — — -

Caascar(a, i) + Geattstipena if p[2] #0

Ce zas|o, =
cattaas(N) Caascar(0o, N) otherwise

] min]L B, — Coxrralo, 1), o)} Hy > !/mx'rRA(U"M)
OGAS(JAP(O'| N) = .
p[0] otherwise

O“JXTI"A(U‘ “’) = Gau + Cxren (M) + CNEW(O', j_t)
ccaih.‘a[ur if MS[ZJ ?é 0
0 otherwise

Grewaecount i o[pg[l] mod 2'%°) = @
Cuew (o, p) = s
wew (0, 1) {l‘l otherwise

CxE x-_:H.(M) =

© 2017 Trail of Bits RSKj Security Assessment |15

Figure 1: The yellow paper (EIP-150 revision) p.29.

This fee ensures that a called contract can at least perform some basic operations.
RSK]J does not follow this implementation (VM.java#L1260-L1377). The stipend is not added
if the gas transferred is less than the remaining gas (VM.java#L1318-L1321).

This has a direct impact on the use of the send function. addr.send(v) is equivalent to
addr.gas(0).value(v) (). As a result, the destination of send will have 0 gas instead of
2300. As a result, send will fail if the destination is a contract.

Appendix D contains a test case to trigger the issue.

Exploit Scenario

Bob creates a contract that allows users to store and withdraw some ethers. During the
withdrawal, the contract sends some ethers to another contract as a fee. Alice stores 10
ethers in this contract. After some times she decides to withdraw the 10 ethers. However,
due to the error in the CALL gas computation, the withdraw function fails and Alice can't
withdraw the 10 ethers.

Appendix E illustrates this attack.

Recommendation
Fix the CALL gas computation.

We found other potential issues related to the CALL gas computation. We recommend
rewriting the CALL gas computation entirely. The gas computation of complex instructions
(CALL, CREATE, ...) needs to follow a structure closer to the Yellow Paper. Using the same
variable names and operations order would allow easier verification of the correct behavior
of these instructions.

Finally, create unit tests for greater coverage of the instructions’ behavior.

© 2017 Trail of Bits RSKj Security Assessment |16

https://github.com/rsksmart/rskj/blob/4cb1492bf044ba465b672136706086d3f2472678/rskj-core/src/main/java/org/ethereum/vm/VM.java#L1260-L1377
https://github.com/rsksmart/rskj/blob/4cb1492bf044ba465b672136706086d3f2472678/rskj-core/src/main/java/org/ethereum/vm/VM.java#L1318-L1321

6. Wrong msg.value Parameter in CREATE Leads to a Broken Contract

Severity: High Difficulty: Easy
Type: EVM incompatibility Finding ID: TOB-RSK-006
Description

Ether can be transferred during the creation of a contract. The RSK] implementation does
not use the value given as the parameter of the CREATE instruction, but uses instead the
value of the current transaction. As a result, the created contract receives an incorrect
amount of ether in msg.value.

Similar to TOB-RSK-005, the consequences of this difference are:
e An attacker can take advantage of this difference to create a smart contract which
would be secure in ethereum but would be malicious in RSK.
The bug can be triggered accidentally by RSK users.
If RSK] allows another client to connect to the blockchain, the execution of the smart
contract may lead to a different outcome, leading to a possible fork of the
blockchain.

In the function createContract (Program.java#625-627), getCallvalue() is used instead
of the endowment (Program.java#L572). As a result, the msg.value of the current
transaction is supplied to the constructor instead of the one provided by the CREATE
instruction.

ProgramInvoke programInvoke = programInvokeFactory.createProgramInvoke(
this, new DataWord(newAddress), getOwnerAddress(), getCallValue(), gasLimit,
newBalance, null, track, this.invoke.getBlockStore(), byTestingSuite());

This issue would make any contract creation fail if the caller were a function with a
non-zero msg.value and the constructor were not payable.

Appendix D contains a test case to trigger the issue.

Exploit Scenario

Bob creates a contract that allows users to store and withdraw some ethers. The withdraw
function creates a non-payable contract used as proof of withdrawing. Alice decides to
store 10 ethers in the contract. After some times she decides to withdraw the 10 ethers.
Due to the wrong value sent to the created contract in withdrawal, the creation of the
contract and the call to withdraw fail. As a result, Alice is not able to retrieve the 10 ethers.
Appendix E illustrates this attack.

© 2017 Trail of Bits RSKj Security Assessment |17

https://github.com/rsksmart/rskj/blob/4cb1492bf044ba465b672136706086d3f2472678/rskj-core/src/main/java/org/ethereum/vm/program/Program.java#L625-L627
https://github.com/rsksmart/rskj/blob/4cb1492bf044ba465b672136706086d3f2472678/rskj-core/src/main/java/org/ethereum/vm/program/Program.java#L572

Recommendation
Use the correct value supplied to CREATE.

Similar to TOB-RSK-005, create unit tests for greater code coverage to test the instructions'’
behavior.

© 2017 Trail of Bits RSKj Security Assessment |18

7. Duplicated Logs May Lead to Misinterpreted Events

Severity: Medium Difficulty: Easy
Type: EVM incompatibility Finding ID: TOB-RSK-007
Description

The Ethereum blockchain allows events recording through log operations. These events
can be used by light clients to receive information from the blockchain. In RSK, the logs
emitted during the creation of a contract are duplicated. As a result, a client based on the
blockchain events can be fooled.

The logs are added to the program result during the creation of a contract in
createContract (Program.java#637):

getResult().merge(result);

merge is defined in ProgramResult#203-206

public void merge(ProgramResult another) {
addInternalTransactions(another.getInternalTransactions());
addDeleteAccounts(another.getDeleteAccounts());
addLogInfos(another.getLogInfolList());

The logs are added a second time in createContract (Program.java#673):

getResult().addLogInfos(result.getlLogInfolList());
As a result, any log in a constructor is duplicated.
Appendix D contains a test case to trigger the issue.
Exploit Scenario
Bob creates a contract which stores some investments. The investments are logged. During
the creation of the contract, Bob made an initial investment. Due to the duplicated logs,
Bob’s investments is announced twice. As a result, Alice believes that Bob made more

investments than he actually did.

Recommendation
Remove the duplicated logs.

Similar to TOB-RSK-005 and TOB-RSK-006, create unit tests for greater code coverage to
test the instructions’ behavior.

© 2017 Trail of Bits RSKj Security Assessment |19

http://solidity.readthedocs.io/en/develop/contracts.html?highlight=log#events
https://github.com/rsksmart/rskj/blob/8fc96b7dcd24eeeec4f989102924bdd10953740c/rskj-core/src/main/java/org/ethereum/vm/program/Program.java#L637
https://github.com/rsksmart/rskj/blob/4cb1492bf044ba465b672136706086d3f2472678/rskj-core/src/main/java/org/ethereum/vm/program/ProgramResult.java#L203-L206
https://github.com/rsksmart/rskj/blob/4cb1492bf044ba465b672136706086d3f2472678/rskj-core/src/main/java/org/ethereum/vm/program/Program.java#L673

8. Incorrect Gas Computation in Modexp

Severity: Medium Difficulty: High
Type: Denial of Service Finding ID: TOB-RSK-008
Description

The Modexp precompiled contract (PrecompiledContracts.java#L233-L257) is supposed to
cost a minimum of 400 gas. In reality, it only costs four times the number of bytes of its
arguments.

@Override
public long getGasForData(byte[] data) {
return data != null ? 4 * data.length : 400;

We suspect that the 4 * data.length value was meant to be added to 40e.

Fortunately, Modexp will throw a Java exception causing the contract to consume all of the
available gas if it is passed zero bytes of data. If that exception were not thrown, then a
maliciously crafted call to Modexp would cost zero gas and create a denial of service
vulnerability. Regardless of the exception, a carefully crafted call to Modexp will cost less
gas than intended.

Exploit Scenario

Bob creates a contract with a significant number of Modexp calls, for example, by manually
calling it by address. These calls will cost significantly less gas than was intended, and
produce a load on the network that is not commensurate with the gas cost.

contract Test {
function test() {
address a = 0x1000007;
a.call(.);

Recommendation

The gas computation for Modexp has been completely rewritten in the latest version of
Ethereum), fixing the bug. Short term, we recommend pulling the latest version of
PrecompiledContracts.java from Ethereum).

Long term, unit tests should be created to check the intended gas consumption of
precompiled contracts like Modexp.

© 2017 Trail of Bits RSKj Security Assessment |20

https://github.com/rsksmart/rskj/blob/4cb1492bf044ba465b672136706086d3f2472678/rskj-core/src/main/java/org/ethereum/vm/PrecompiledContracts.java#L233-L257
https://github.com/ethereum/ethereumj/blob/9d1fdaa954c1710a0a0f890d6b2294cce54fd29c/ethereumj-core/src/main/java/org/ethereum/vm/PrecompiledContracts.java#L224-L243

9. Missing Implementation of EIPs May Lead to Denial of Service

Severity: Medium Difficulty: Undetermined
Type: Denial of Service Finding ID: TOB-RSK-009
Description

The Spurious Dragon hardfork led to the implementation of four new Ethereum
improvements (EIP 155, 160, 161, 170). These improvements make denial of service attacks
more difficult. RSK implements only EIP 155. As a result, RSK may be more vulnerable to
denial of service attacks than the current Ethereum blockchain.

The missing EIPs are:
EIP 160: EXP cost increase
EIP 161: State trie clearing (invariant-preserving alternative)
EIP 170: Contract code size limit

Note that we have not evaluated whether the vulnerabilities addressed by these EIPs are
realistically exploitable in RSK.

Exploit Scenario

Bob creates a contract that extensively uses the EXP instruction. As a result, he is able to
generate a lot of computation in the RSK nodes for a low price, leading to a slowdown of
the transaction processing.

Recommendation
Implement the missing EIPs.

The Ethereum specification is constantly evolving. Be sure to clearly document which EIPs
are implemented in RSK and which are not.

© 2017 Trail of Bits RSKj Security Assessment |21

https://blog.ethereum.org/2016/11/18/hard-fork-no-4-spurious-dragon/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-160.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-161.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-170.md

10. Incorrect Encoding Implementation Leads to Wrong RLP Encoding

Severity: Undetermined Difficulty: Undetermined
Type: Data Validation Finding ID: TOB-RSK-010
Description

A contract can be encoded with RLP encoding. The implementation of this encoding is not
correct and does not store the expected information. As a result, any attempt to use this
encoding may be incorrect.

We did not assess the impact of this issue, as we did not assess the database
implementation.

The function getEncoded (ContractDetailsCachelmpl.java#L202) is meant to return the RLP
representation of the storage and bytesstorage HashMap of the contract. The function is
composed of three loops. The first loop saves to the keys and values arrays the storage.

for (DataWord key : storage.keySet()){
DataWord value = storage.get(key);

keys[i] = RLP.encodeElement(key.getData());
values[i] = RLP.encodeElement(value.getNoLeadZeroesData());

++1i;

}

The first problem comes from the second loop, which saves bytesStorage to the keys and
values arrays, removing the previously saved storage values.

for (DataWord key : bytesStorage.keySet()) {
byte[] value = bytesStorage.get(key);

keys[i] = RLP.encodeElement(key.getData());
values[i] = RLP.encodeElement(value);

++1i;

}

Moreover, i is not re-initialized, which may lead to an out of bound error. Note that the
third loop saves bytesStorage again, but in keys2 and values2.

© 2017 Trail of Bits RSKj Security Assessment |22

https://github.com/rsksmart/rskj/blob/4cb1492bf044ba465b672136706086d3f2472678/rskj-core/src/main/java/org/ethereum/db/ContractDetailsCacheImpl.java#L202

for (DataWord key : bytesStorage.keySet()) {
byte[] value = bytesStorage.get(key);

keys2[i] = RLP.encodeElement(key.getData());
values2[i] = RLP.encodeElement(value);

++1i;

Finally, if bytesStorage is not empty getEncoded returns the same variables two times,
instead of returning the rlp encoding of keys2 and values2.

byte[] rlpKeysList2 = RLP.encodelList(keys2);

byte[] rlpValueslList2 = RLP.encodelList(values2);

return RLP.encodelList(rlpKeysList, rlpValuesList, rlpCode, rlpKeyslList,
rlpValueslList);

Exploit Scenario
The RSK database of Alice is corrupted due to the wrong RLP encoding. As a result, she is
not able to use the platform.

Recommendation
Fix the RLP encoding.

Ethereum) implemented a light version of this encoding in 6863351d, and the function is
not anymore supported in the master branch (ContractDetailsCachelmpl.java#L96-L98).
Consider investigating the latest modifications of Ethereum).

© 2017 Trail of Bits RSKj Security Assessment |23

https://github.com/ethereum/ethereumj/commit/6863351dc6cdf9e79bc4f9b198b73e2b2de20783#diff-a9b47dd7ff34bef6460a716b3ce9ad03L159
https://github.com/ethereum/ethereumj/blob/165fe6060ca40325debcc3356b02c634f1f945ee/ethereumj-core/src/test/java/org/ethereum/jsontestsuite/suite/ContractDetailsCacheImpl.java#L96-L98

A. Vulnerability Classifications

Vulnerability Classes

Class

Related to

Access Controls

Authorization of users and assessment of rights

Auditing and Logging

Auditing of actions or logging of problems

Authentication

Identification of users

Configuration

Security configurations of servers, devices or software

Cryptography

Protecting the privacy or integrity of data

Data Exposure

Unintended exposure of sensitive information

Data Validation

Improper reliance on the structure or values of data

Denial of Service

Causing system failure

Error Reporting

Reporting of error conditions in a secure fashion

EVM incompatibility

Compatibility with the ethereum specification

Patching

Keeping software up to date

Session Management

Identification of authenticated users

Timing

Race conditions, locking or order of operations

Undefined Behavior

Undefined behavior triggered by the program

© 2017 Trail of Bits

RSKj Security Assessment |24

Severity Categories

Severity

Description

Informational

The issue does not pose an immediate risk, but is relevant to security
best practices or Defense in Depth

Undetermined

The extent of the risk was not determined during this engagement

Low The risk is relatively small or is not a risk the customer has indicated is
important

Medium Individual user's information is at risk, exploitation would be bad for
client's reputation, moderate financial impact, possible legal
implications for client

High Large numbers of users’ information is at risk, very bad for client’s

reputation, or serious legal or financial implications

Difficulty Levels

Difficulty

Description

Undetermined

The difficulty of exploit was not determined during this engagement

Low Commonly exploited, public tools exist or can be scripted that exploit
this flaw

Medium Attackers must write an exploit, or need an in-depth knowledge of a
complex system

High The attacker must have privileged insider access to the system, may

need to know extremely complex technical details or must discover
other weaknesses in order to exploit this issue

© 2017 Trail of Bits

RSKj Security Assessment |25

B. SpotBugs Documentation

Consider using Spotbugs. It produces several orders of magnitude more warnings than
Infer and many of them are false positives. However, it can find Java-specific bugs that Infer
cannot.

For example, Spotbugs could have detected TOB-RSK-002 by producing a warning at
compile time that an incorrect argument type was being passed to remove. It is also able to
detect many other exploitable bugs, such as certain types of infinite loops.

Spotbugs can be integrated into RSKj's build process by including it as a plugin inside
rskj-core/build.gradle.

False positives can be filtered out by creating an exclude_filter.xml file and configuring
Spotbugs to use it within the Gradle build file:

spotbugs {
effort = 'max’
excludeFilter = rootProject.file('exclude filter.xml")
ignoreFailures = false
reportLevel = 'low'
sourceSets = [sourceSets.main]

}

The format of the exclude filter is documented here:
http://spotbugs.readthedocs.io/en/latest/filter.ntml

© 2017 Trail of Bits RSKj Security Assessment |26

https://spotbugs.github.io/
https://plugins.gradle.org/plugin/com.github.spotbugs
http://spotbugs.readthedocs.io/en/latest/filter.html

C. Coding Practices

This section describes coding practices that encourage future bugs and obfuscate the
codebase, as well as suggestions for how to mitigate their risks. At best, these practices
frustrate code review and should be avoided for that reason alone.

Debugging and Unused Code

RSKj contains substantial code for debugging purposes or that is wholly unused. It is not
trivial to determine the code intended for each use. Debugging and/or dead code increases
the attack surface. It should be clearly identified and correctly removed in production. For
example, it is easy to forget to remove classes like SamplePrecompiledContract.java and
accidentally maintain this precompiled class in production.

Java Reflection

Java reflection is used to invoke precompiled contract methods. This can be dangerous. It
introduces the risk of unintentionally allowing a contract to call a method from a
precompiled contract that was never intended to be made public.

For example, reflection in the 2-way peg code allows any contract to call any function within
Bridge.java and RemascContract.java. While this does not appear to be a security issue
now, it would be easy for a developer to later add a function to these files that they believe
is private but, in fact, becomes callable thanks to reflection. Further, because control flow is
determined at runtime, reflection hides bugs from static analysis.

Carefully consider the need for Java reflection.

Java Coding Practices

Several common Java errors were identified, such as overriding equals() but not
hashCode (), or using primitive arrays as Map keys. These have the potential to cause
security issues. Because Ethereum) does not consistently follow good coding practices, RSKj
inherits the flaws.

A grep of the codebase reveals twenty instances where a primitive byte array is used as a
map key: grep -r "Map<byte\[\]" **/*.java.In Java, this is rarely desirable, because
primitive byte arrays do not overload equals() and hashCode(). This means that a
Map<byte[],_> can contain multiple keys containing the same byte sequence. Maintaining
such code in the codebase might encourage future developers to improperly use this
idiom. The following code provides an example of the danger:

© 2017 Trail of Bits RSKj Security Assessment |27

https://github.com/rsksmart/rskj/blob/4cb1492bf044ba465b672136706086d3f2472678/rskj-core/src/main/java/co/rsk/peg/SamplePrecompiledContract.java
https://github.com/rsksmart/rskj/blob/4cb1492bf044ba465b672136706086d3f2472678/rskj-core/src/main/java/co/rsk/peg/Bridge.java
https://github.com/rsksmart/rskj/blob/4cb1492bf044ba465b672136706086d3f2472678/rskj-core/src/main/java/co/rsk/remasc/RemascContract.java

byte[] k1 = new byte[]{1, 2, 3};

byte[] k2 = new byte[]{1, 2, 3};
Map<byte[],String> map = new HashMap<>();
map.put(kl, "foo");

map.put(k2, "bar");
System.out.println(map.size());
System.out.println(map.get(kl));
System.out.println(map.get(new byte[]{1, 2, 3}));

This code will print out “2<Jfoo<Jnull<))", despite the fact that the programmer probably
expected it to print out “1<Jbar<Jbar<J”.

We inspected each of the instances and found none to be vulnerable.

Style Guidelines

RSKj was not written with a consistent coding style. Consider choosing and enforcing a
common style guide. This is not solely an aesthetic recommendation. Doing so will help
increase intelligibility and actually help programmers catch common errors. For example,
most modern style guides require including braces after all if, for, and while blocks, even
if they are syntactically optional. This requirement would have made errors like the one
that led to Apple’s “goto fail” SSL bug more evident.

Loop Behavior

There are instances in the code where loops omit the first and/or last elements of a list. For
example, line 517 of BridgeSupport.java starts at index one and ends at the second-to-last
index:

for (int j = 1; j < chunkList.size() - 1; j++) {
Line 543 of the same file also skips the first entry:

for (int i = 1; i < chunks.size(); i++) {
In these cases where the Bridge code is tightly coupled and split across multiple files, it is
particularly difficult to determine whether this behavior is correct. It is challenging for a
programmer to statically determine the semantics of the lists being iterated in these

contexts. Therefore, we recommend at a minimum adding comments to these lines
explaining the unusual iteration bounds.

© 2017 Trail of Bits RSKj Security Assessment |28

https://google.github.io/styleguide/javaguide.html#s4.1.1-braces-always-used
https://www.imperialviolet.org/2014/02/22/applebug.html
https://github.com/trailofbits/rskj/blob/master/rskj-core/src/main/java/co/rsk/peg/BridgeSupport.java#L517
https://github.com/trailofbits/rskj/blob/master/rskj-core/src/main/java/co/rsk/peg/BridgeSupport.java
https://github.com/trailofbits/rskj/blob/master/rskj-core/src/main/java/co/rsk/peg/BridgeSupport.java#L543

Test coverage

One of the strengths of the RSK architecture is that it provides easy-to-use unit tests at
different levels (e.g., from the EVM instruction level all the way up to the transaction level).
However, we found that the unit tests lack sufficient code coverage, and RSKj would benefit
from greater coverage. Many issues found in this audit could have been discovered with
more testing.

Syntax of Specification Implementation

Implementing a specification (e.g., the Ethereum Yellow Paper and EIPs) is error-prone and
necessitates careful reviews. We recommend that the implementation follow the syntax of
the specification as closely as possible. For example, such a practice may have avoided
TOB-RSK-005, an issue in the gas CALL computation.

Other Implementation Notes

The logger warnings on lines 372 and 373 of Bridge.java mention the wrong function name,
which can cause confusion when analyzing logs. The function name should in fact be
“addSignature”:

logger.warn("Exception in releaseBtc", e);
throw new RuntimeException("Exception in releaseBtc", e);

© 2017 Trail of Bits RSKj Security Assessment |29

https://github.com/rsksmart/rskj/blob/6310e5b20d1fd9f815449659e71b0390a8fa4827/rskj-core/src/main/java/co/rsk/peg/Bridge.java#L372-L373

D. Test cases

The following test case are based on TransactionTest.java.

public class TOBTransactionTest {

private Transaction mycreateTx(Blockchain blockchain, ECKey sender, byte[]
receiveAddress,
byte[] data, long value, long gasValue, long gasLimit) throws
InterruptedException {
Biginteger nonce = blockchain.getRepository().getNonce(sender.getAddress());
Transaction tx = new Transaction(
ByteUtil.bigIntegerToBytes(nonce),
ByteUtil.longToBytesNoLeadZeroes(gasValue),
//ByteUtil.longToBytesNoLeadZeroes(3_000_000),
ByteUtil.longToBytesNoLeadZeroes(gasLimit),
receiveAddress,
ByteUtil.longToBytesNoLeadZeroes(value),
data);
tx.sign(sender.getPrivKeyBytes());
return tx;

}

private TransactionExecutor executeTransaction(Blockchain blockchain, Transaction tx) {
Repository track = blockchain.getRepository().startTracking();
TransactionExecutor executor = new TransactionExecutor(tx, new byte[32],
blockchain.getRepository(),
blockchain.getBlockStore(), blockchain.getReceiptStore(), new
ProgramlinvokeFactorylmpl(), blockchain.getBestBlock());

executor.init();
executor.execute();
executor.go();
executor.finalization();

track.commit();
return executor;

@Test
public void TOB_RSK_6() throws I0Exception, InterruptedException {

© 2017 Trail of Bits RSKj Security Assessment |30

https://github.com/rsksmart/rskj/blob/4cb1492bf044ba465b672136706086d3f2472678/rskj-core/src/test/java/org/ethereum/core/TransactionTest.java

/-k
pragma solidity A0.4.11;
contract Bank{
function () payable{
}
}

contract BankTest{
Bank bank;
function BankTest()}{
bank = new Bank();
}
function test() payable{
/1 send will fail as it reach the fallback function with 0 gas
// instead of 2300
require(bank.send(msg.value));
}
}
*/
Biginteger nonce =
RskSystemProperties. CONFIG.getBlockchainConfig().getCommonConstants().getlnitialNonc
e();
Blockchain blockchain =
ImportLightTest.createBlockchain(GenesisLoader.loadGenesis(nonce,
getClass().getResourceAsStream("/genesis/genesis-light.json"), false));

ECKey sender =
ECKey.fromPrivate(Hex.decode("3ec771c31cac8c0dba77a69e503765701d3c2bb62435888d
4ffa38fed60c445c"));

System.out.printin("address: " + Hex.toHexString(sender.getAddress()));

String code =
"6060604052341561000c57fe5b5b610015610071565b809050604051809103906000f08015
1561002b57fe5b600060006101000a815481 7 3fffffffffffffffffffffffrrff021916908373f
e rrrrrrfrf1602179055505b610080565b604051605280610164833901905
65b60d68061008e6000396000f30060606040526000357c¢010000000000000000000000000
0000000000000000000000000000000900463ffffffff168063f8a8fd6d14603a575bfe5b60406
042565b005b600060009054906101000a9004 7 3Ffffffffffffffffffffrrrit167 3
frFFAFFFArfrff166108fc349081150290604051809050600060405180830381858888f19
350505050151560a75760006000fd5b5b5600a165627a7a723058203c7a8287a3fc250a21a3
977795b8503f06a26297768cd6cb6718c2775f0967b5002960606040523415600b57fe5b5b6
0398060196000396000f30060606040525b600b5b5b565b0000a165627a7a7230582084c75

© 2017 Trail of Bits RSKj Security Assessment |31

502cddbf559¢cb954d63c37b724a0207330da%eb8cb1b572ccccc04599770029";

String abi =
"[{\"constant\":false,\"inputs\":[],\"name\":\"test\" \"outputs\":[],\"payable\":true \"type\":\"fu
nction\"},{\"inputs\":[],\"payable\":false \"type\":\"constructor\"}]\n";

Transaction tx = mycreateTx(blockchain, sender, new byte[0], Hex.decode(code), 0xO0,
1, 30000000);

executeTransaction(blockchain, tx).getResult();

byte[] contractAddress = tx.getContractAddress();

// Build the data for the fallback function
CallTransaction.Contract contract = new CallTransaction.Contract(abi);
byte[] callData = contract.getByName("").encode();

// call test_create, with msg.value == 0x1

Transaction tx1 = mycreateTx(blockchain, sender, contractAddress, callData, 0x1, 1,
30000000);

ProgramResult programResult1 = executeTransaction(blockchain, tx1).getResult();

/1 Check that there is no exception
Assert.assertEquals(null, programResult1.getException());

}

@Test
public void TOB_RSK_6() throws I0Exception, InterruptedException {

/*
pragma solidity £0.4.11;
contract Called{
function Called() {
}
}

contract Test{

function test_create() payable returns(bool){
require(msg.value>0);
// msg.value in the constructor should be 0
// but it is msg.value of the caller
// As a result msg.value > 0 in the constructor
// and the construction fails as Called is not payable
Called c = new Called();

© 2017 Trail of Bits RSKj Security Assessment |32

}
*/

Biginteger nonce =
RskSystemProperties. CONFIG.getBlockchainConfig().getCommonConstants().getInitialNonc
e();
Blockchain blockchain =
ImportLightTest.createBlockchain(GenesisLoader.loadGenesis(nonce,
getClass().getResourceAsStream("/genesis/genesis-light.json"), false));

ECKey sender =
ECKey.fromPrivate(Hex.decode("3ec771¢31cac8c0dba77a69e503765701d3c2bb62435888d
4ffa38fed60c445c"));

System.out.printIn("address: " + Hex.toHexString(sender.getAddress()));

String code =
"6060604052341561000c57fe5b5b61011f8061001c6000396000f30060606040526000357c0
100900463ffffffff168063f
8a8fd6d1461003b575bfe5b61004361005d565b60405180821515151581526020019150506
0405180910390f35b600060006000341115156100715760006000fd5b610079610096565b80
9050604051809103906000f080151561008f57fe5090505b5090565b604051604e806100a68
3390190560060606040523415600b57fe5b5b5b5b603380601b6000396000f300606060405
25bfe00a165627a7a7230582075e7f56bdd442a3535c7648128d36e20a4ffchf532d510f93a26
67d5cf884d6f0029a165627a7a72305820166b215c8d54a51d7f42aa722d8d3af333855ea293
30d37fc6fe3dce7dbab4d70029";

String abi =
"[{\"constant\":false,\"inputs\":[],\"name\":\"test\" \"outputs\":[{\"name\":\"\" \"type\":\"bool\
"}.\"payable\":true \"type\":\"function\"}]\n";

Transaction tx = mycreateTx(blockchain, sender, new byte[0], Hex.decode(code), 0x0,
1, 30000000);//5*25036);

executeTransaction(blockchain, tx).getResult();

byte[] contractAddress = tx.getContractAddress();

// Build the data for test_create()
CallTransaction.Contract contract = new CallTransaction.Contract(abi);
byte[] callData = contract.getByName("test").encode();

// call test_create, with msg.value == 0x1

Transaction tx1 = mycreateTx(blockchain, sender, contractAddress, callData, 0x1, 1,
30000000);

ProgramResult programResult1 = executeTransaction(blockchain, tx1).getResult();

© 2017 Trail of Bits RSKj Security Assessment |33

/1 Check that there is no exception
Assert.assertEquals(null, programResult1.getException());

}

@Test
public void TOB_RSK_7() throws I0Exception, InterruptedException {

/*
contract LogContract{
event Log();
function LogContract(){
Log():
}
}
contract LOGTest{
function test(){
new LogContract();
}

}
*/

Biginteger nonce =
RskSystemProperties. CONFIG.getBlockchainConfig().getCommonConstants().getinitialNonc
e();
Blockchain blockchain =
ImportLightTest.createBlockchain(GenesisLoader.loadGenesis(nonce,
getClass().getResourceAsStream("/genesis/genesis-light.json"), false));

ECKey sender =
ECKey.fromPrivate(Hex.decode("3ec771¢31cac8c0dba77a69e503765701d3c2bb62435888d
4ffa38fed60c445c"));

System.out.printIn("address: " + Hex.toHexString(sender.getAddress()));

String code =
"60606040523415600b57fe5b5b6101278061001b6000396000f30060606040526000357¢01
00900463ffffffff168063f8
a8fd6d1461003b575bfe5b341561004357fe5b61004b61004d565b005b61005561006f565b8
09050604051809103906000f080151561006b57fe5b505b565b604051607d8061007f833901
90560060606040523415600b57fe5b5b7f5e7df75d54e493185612379¢616118a4c9ac802de
621b010c96f74d22df4b30a60405180905060405180910390a15b5b603380604a6000396000
f30060606040525bfe00a165627a7a72305820ca180ff8a4f48f0761ceccb547fa3dc04f4839ed

© 2017 Trail of Bits RSKj Security Assessment |34

edec64c03dc4d03d626ecabe0029a165627a7a7230582043dd0b76a02e37af49b2f1d11da82
899¢f862ddbfd78d22e21c55¢c159faadcbd0029";

String abi =
"[{\"constant\":false,\"inputs\":[],\"name\":\"test\" \"outputs\":[],\"payable\":false,\"type\":\"f
unction\"})\n";

Transaction tx = mycreateTx(blockchain, sender, new byte[0], Hex.decode(code), 0x0,
1, 30000000);//5*25036);

executeTransaction(blockchain, tx).getResult();

byte[] contractAddress = tx.getContractAddress();

// Build the data for test()
CallTransaction.Contract contract = new CallTransaction.Contract(abi);
byte[] callData = contract.getByName("test").encode();

// call test_create

Transaction tx1 = mycreateTx(blockchain, sender, contractAddress, callData, 0x0, 1,
30000000);

ProgramResult programResult1 = executeTransaction(blockchain, tx1).getResult();

// Check that the value in the log is ==
LogInfo log = programResult1.getLoglInfolList().get(0);

// Check that only one log is present
Assert.assertEquals(1, programResult1.getLogInfoList().size());
}
}

© 2017 Trail of Bits RSKj Security Assessment |35

E. Exploitable Smart Contracts

TOB-RSK-005

pragma solidity 70.4.11;
contract Bank{

mapping(address => uint) public contributions;
address contractFee;

function Bank(){
// init contractFee

function contribute() payable{
contributions[msg.sender] += msg.value;

// The send to contractFee will fail

// Thereby withdraw() cannot be executed

function withdraw(){
require(contributions[msg.sender]>1 wei);
require(contractFee.send(1 wei));
contributions[msg.sender] -= 1 wei;
require(msg.sender.send(contributions[msg.sender]));
contributions[msg.sender] = 0 ;

© 2017 Trail of Bits RSKj Security Assessment |36

TOB-RSK-006
pragma solidity 70.4.11;

contract Bank{

mapping(address => uint) public contributions;
function contribute() payable{
contributions[msg.sender]| += msg.value;

// The ProofOfWithdrawing creation will fail

// Thereby withdraw() cannot be executed

function withdraw() payable{
require(msg.value >1 wei); // fee

ProofOfWithdrawing p = new Proof(msg.sender)
// store p somewhere

msg.sender.send(contributions[msg.sender]);
contributions[msg.sender] = 0 ;

© 2017 Trail of Bits RSKj Security Assessment |37

F. Fix Log

RSK made the following modifications to their codebase as a result of this report. Each of
the fixes was verified by the audit team.

Finding 1: Resource Leaks in Trie
No immediate fix necessary because the underlying stream, a ByteArrayInputStream,
does not leak resources.

Finding 2: Headers Not Properly Deleted in the BlockStore
Fixed by removing unused code.

Finding 3: Infinite Loop in Ethereum] Key Verification
Fixed by removing unused code.

Finding 4: Integrate Infer into the RSK build process
Informational only. No action required.

Finding 5: Erroneous Gas Computation in CALL Breaks Sending Ether to a Contract
https://github.com/rsksmart/rskj/pull/252

Finding 6: Wrong msg.value Parameter in CREATE Leads to a Broken Contract
https://github.com/rsksmart/rskj/pull/242

Finding 7: Duplicated Logs May Lead to Misinterpreted Events
https://github.com/rsksmart/rskj/pull/243

Finding 8: Incorrect Gas Computation in Modexp
Pulled in the latest version of Modexp from Ethereum]
https://github.com/rsksmart/rskj/pull/231

Finding 9: Missing Implementation of EIPs May Lead to Denial of Service
Two out of three recommendations addressed; one is still in progress.

9.1: EIP 160 implemented. https://github.com/rsksmart/rskj/pull/253
9.2: EIP 161 will not be implemented because RSK accounts have a significant creation cost.
9.3: EIP 170 implemented. https://github.com/rsksmart/rskj/pull/267

Finding 10: Incorrect Encoding Implementation Leads to Wrong RLP Encoding
Deprecated the faulty methods by throwing an exception when called.
https://github.com/rsksmart/rskj/pull/269

© 2017 Trail of Bits RSKj Security Assessment |38

https://github.com/rsksmart/rskj/pull/257
https://github.com/rsksmart/rskj/pull/262
https://github.com/rsksmart/rskj/pull/252
https://github.com/rsksmart/rskj/pull/242
https://github.com/rsksmart/rskj/pull/243
https://github.com/rsksmart/rskj/pull/231
https://github.com/rsksmart/rskj/pull/253
https://github.com/rsksmart/rskj/pull/267
https://github.com/rsksmart/rskj/pull/269

EIP 161 Discussion (Finding 9.2)

The vulnerability that EIP 161 addresses is insignificant in RSKj because the cost of creating
an account in RSK is greater than in Ethereum. The following is a justification for this claim
provided by RSK:

EIP 161 does not make sense in a platform that is protected from creating accounts with
close to zero cost. EIP 161 was added to Ethereum because an attacker was able to create
accounts at close to zero cost.

EIP 161 can only delete accounts in the following cases:
1. an empty account has zero value transferred to it through CALL;
2. an empty account has zero value transferred to it through SUICIDE;
3. an empty account has zero value transferred to it through a message-call
transaction; or
4. an empty account has zero value transferred to it through a zero-gas-price fees
transfer.

Case 1: Transferring zero value is only used in contract method calls. When a contract calls
a contract/account that is non-existent, it will try to create an account for it, and CALL will
return true. A contract can always check if the receiver exists as a contract with
EXTCODESIZE, and in fact Solidity checks the existence of receiver contracts with
EXTCODESIZE for each contract function call, so Case 1 never happens in practice.

Case 2: SUICIDE use is very uncommon because contracts have long lifetimes and there are
low incentives to suicide a contract after use. A contract can be called more than oncein a
contract but will only transfer value if the contract balance is non-zero. Therefore, to
suicide to multiple accounts, the contract must top up the balance after each suicide, which
implies an additional cost. Also, suicide pays 25K gas to create a new account. Therefore,
SUICIDE cannot be used currently to spam the state trie.

Case 3: A message-call transaction that transfers zero value costs. These transactions have
a cost of at least 21K gas. A transfer of zero value modifies the source account because the
nonce is incremented. It seems that the cost of creation of a destination account is not well
considered in the original Ethereum design, because at least 25K gas should be paid, as
CALL pays for the same operation. Therefore, CALLs are subsidized. However if an attacker
wants to use this subsidy to spam the trie state, he can send one satoshi to each created
address, and avoid EIP 161 account deletion. Therefore, account deletion in Case 3 does
not solve any real problem.

Case 4: In RSK, this case occurs in REMASC reward sharing. But REMASC may pay zero at
the beginning. However, miners do not currently rotate their coinbase addresses, so no
spam is generated. In the future, REMASC will not pay to miners if the payment is below a
threshold limit, based on the minimum gas price defined in the block header.

© 2017 Trail of Bits RSKj Security Assessment |39

About Trail of Bits

Since 2012, Trail of Bits has helped secure some of the world's most targeted organizations
and devices. We combine high-end security research with a real-world attacker mentality to
reduce risk and fortify code.

Our clientele—ranging from Facebook to DARPA—Ilead their industries. Their dedicated
security teams come to us for our foundational tools and deep expertise in reverse
engineering, cryptography, virtualization, malware, and software exploits. According to
their needs, we may audit their products or networks, consult on the modifications
necessary for a secure deployment, or develop the features that close their security gaps.

After solving the problem at hand, we continue to refine our work in service to the deeper
issues. The knowledge we gain from each engagement and research project further hones
our tools and processes, and extends our software engineers’ abilities. We believe the most
meaningful security gains hide at the intersection of human intellect and computational
power.

© 2017 Trail of Bits RSKj Security Assessment |40

