

Golem
Security Assessment
Smart Contract and Token Protocol
April 5, 2018

Prepared For:
Julian Zawistowski | Golem
julian@golem.network

Prepared By:
Chris Evans | Trail of Bits
chris.evans@trailofbits.com

Gustavo Grieco | Trail of Bits
gustavo.grieco@trailofbits.com

Changelog
March 23, 2018: Initial report delivered
April 5, 2018: Retest report delivered

mailto:julian@golem.network
mailto:chris.evans@trailofbits.com
mailto:gustavo.grieco@trailofbits.com

Executive Summary

Coverage

Retest Results

Project Dashboard

Recommendations Summary
Short Term
Long Term

Findings summary
1. Contracts specify outdated compiler version
2. Race condition in the ERC20 approve function may lead to token theft
3. OpenZeppelin dependencies do not track upstream changes
4. User can silently burn tokens in batchTransfer function
5. Empty accounts can trigger Mint and Burn events
6. Deletion of user tokens in batchTransfer function
7. Hardcoded non-zero burn address is active
8. User can silently burn tokens in the GNTDeposit withdraw function
9. Depositing tokens in GNTDeposit does not reset the timelock
10. Timelock events can be reused
11. Users can burn their own tokens
12. Burning tokens does not update the corresponding total supply
13. A user can stop a batch payment by providing 0x0 as an address

A. Vulnerability classifications

B. Code quality recommendations

C. Slither static analysis

D. Manticore formal verification
TOB-Golem-06: Empty accounts can trigger Mint and Burn events
TOB-Golem-07: Deletion of user tokens in batchTransfer function

E. Issues discovered in GolemNetworkToken
Token transfer not ERC20 compliant
User can silently burn tokens in GNT transfer functions

F. Fix Log
Detailed Fix Log

Executive Summary
From March 12 through March 23, 2018, Golem engaged Trail of Bits to assess Golem’s
Solidity smart contracts. Trail of Bits conducted this assessment over the course of two
person-weeks with two engineers.

The assessment focused on interactions between the user-facing token and the underlying
proxy infrastructure that internally manages and uses the proxy tokens to perform
deposits and mass-transaction operations. We directed static analysis and dynamic
instrumentation to find interactions that could lead to unauthorized token manipulation in
account balances or denial-of-service attacks against the smart contract protocols.

The code reviewed represents a work in progress. A large portion of the functionality is still
in an experimental phase. ERC20 compatibility has been retrofitted onto the original token
by implementing an intermediate token proxy class. As well as optimizing gas efficiency for
batch transactions, it forms the basis of internal transactions used in the deposit process. It
also duplicates the state of internal account balances and token supply tracking to maintain
1:1 parity with the original token contract.

A consequence of this complexity is a fragile interface between many moving parts. Most of
the infrastructure is intended to be opaque to the average user and interacted with only in
a client wrapper. The documentation is also opaque, which makes it difficult to understand
the code.

Standardizing and consolidating contracts should be a top priority, followed by the
migration of tokens to a single point of entry that adheres to a spec and implements all
required functionality. The complexity of maintaining up to two separate balances in the
original token and proxy contracts –- with no formal method of synchronization –- will lead
to subtle bugs, especially as more functionality is added later.

As the Golem ecosystem adds features, the increased complexity will introduce bugs that
will require changes and fixes . Immutable contracts are only good if they are simple.
Currently there is no procedural method for updating deployed contracts for ancillary
services. Golem should consider using an upgrade system that will allow them to introduce
features and bugfixes into their new contracts.

Since the smart contracts only serve to provide tokens for economic use, minimal changes
to established library templates for timelocks, deposits, and transfer mechanisms should
be a goal.

This assessment focused on the TokenProxy, batch processing, and deposit smart
contracts. Interactions with the Concent service and main Golem client application were

https://consensys.github.io/smart-contract-best-practices/software_engineering/#upgrading-broken-contracts
https://hackernoon.com/upgradeable-smart-contracts-a7e9aef76fdd

out of scope. Trail of Bits strongly recommends further studying the security of these
features as they are integrated into the final environment.

Appendix C contains a short reference to the Slither static analyzer used in this
engagement. Appendix D includes an overview of our dynamic analysis tool Manticore, as
well as examples and scripts used to trigger TOB-Golem-06 and TOB-Golem-07 .

https://docs.google.com/document/d/1iStGFhzPP1I6gY2CbmzEN4hkqOd3Y6N8O7HynGMXuH8/edit#heading=h.8ndqsyude5h9

Engagement Goals & Scope
The engagement was scoped to provide a security assessment of the risk factors related to
the core Golem network smart contract ecosystem and token implementation.

In particular we sought to answer the following questions:

● Is it possible for an unauthorized third party to gain administrative access to
deployed Golem contracts?

● Are tokens managed and stored securely within the contract?
● Can the token proxying infrastructure be manipulated to distort token balances?
● Is it possible to cause the contract services to enter an unrecoverable state?

The following components were out of scope for this assessment:

● Client application protocol and interface layer that interacts with on-chain contracts
● The external concent and verification/reimbursement implementation
● Message parsing and IPC libraries between the concent service and Golem
● Incomplete and in-progress smart-contract functionality (e.g., GNTPayments.sol)
● Initial crowdfunding and token genesis functionality
● The Golem website and installation scripts and dependencies

Trail of Bits conducted a detailed security analysis from the perspective of an attacker with
access to the public Golem documentation and source code. We sought to identify risks,
and scored their severity based on their likelihood and potential impact. We also sought to
provide a mitigation strategy for each risk factor, whether it required a procedural change
or a replacement of the solution, in whole or in part, with a more secure alternative.

Coverage
This audit focused on an in-depth analysis of the token implementation, in particular the
contracts handling batch processing and proxy management processes.

GolemNetworkTokenBatching. Scenarios involving token ownership, transfer, and
minting were assessed and tested. Usage of the OpenZeppelin base templates were
analyzed for attack surface exposure. ERC20 compliance was also taken into consideration,
as well as the handling and emission of events.

Token Proxy and Batch Processing. The current implementation relies on converting
regular user tokens into an intermediary format controlled by a proxy contract on the
backend in order to optimize for transfer costs and batch transactions. We explored the
initial transfer mechanism using gate addresses for ways to block or intercept
GolemNetworkToken (GNT) in holding. The invariants for internal account keeping which
track token supply and user balances were also audited. The safety and semantics of the
batch processing function was examined, in addition to the ERC677 transferAndCall
mechanism.

Token deposit and timelocking. The ancillary deposit-escrow contract that interacts with
the token proxy was analyzed for logic bugs that could be abused to trap balances or
invalidate the 1:1 relationship of user account balances maintained between the proxy and
the token contract. The modifier restrictions on ownership were verified and the semantics
of the time-locking restriction were tested.

Retest Results
Trail of Bits performed a 3-day retest of Golem’s smart contracts from March 28 to March
30, 2018 to verify the fixes of the issues reported during the two previous weeks. Each of
the issues was re-examined and verified by the audit team.

Emphasis was placed on investigating the code that was patched, the efficacy of the
patches on the reported issues, and the security ramifications that may arise on the rest of
the contracts.

In total, Trail of Bits found that seven issues were fully addressed, one issue was partially
addressed, and two issues were not addressed. Issues that were not addressed include two
low-severity issues. The partial fix for the high severity issue reduces its impact to “low.”

 High Medium Low Info TOTAL

Fixed ◼◼ ◼◼ ◼ ◼◼ 7 issues

Partially Fixed ◼ 1 issue

Unfixed ◼◼ 2 issues

Figure 1: Remediation status since the initial security assessment, as of March 30, 2018

In the process of the retest, Trail of Bits discovered three new issues produced by the
recent patches, including a medium-severity issue related to the amount of tokens
available in the already-deployed GolemNetworkToken . These issues are described in
TOB-Golem-12 , TOB-Golem-13 , and TOB-Golem-14 .

Further information about the patching status of the findings is in Appendix F .

Project Dashboard
Application Summary

Name Golem Smart Contracts

Version 62a1e0dab3baf8e9bff79b653dffa7df5f2d10a0

Type Smart contracts

Platform Ethereum / Solidity

Engagement Summary

Dates March 12 to March 30, 2018

Method Whitebox

Consultants Engaged 2

Level of Effort 4 person-weeks + 3 person-day retest

Vulnerability Summary

Total High Severity Issues 3 ◼◼◼

Total Medium Severity Issues 3 ◼◼◼

Total Low Severity Issues 5 ◼◼◼◼◼

Total Informational Severity Issues 2 ◼◼

Total 13

Category Breakdown

Access Controls 1 ◼

Auditing and Logging 1 ◼

Authentication 1 ◼

Configuration 1 ◼

Data Validation 5 ◼◼◼◼◼

Denial of Service 1 ◼

Patching 2 ◼◼

Timing 1 ◼

Total 13

https://github.com/golemfactory/golem-contracts/tree/62a1e0dab3baf8e9bff79b653dffa7df5f2d10a0

Recommendations Summary

Short Term
❑ Update Solidity to the latest version. The solc compiler is under active development.
Downstreaming security changes will help increase overall contract security and catch
outdated practices.

❑ Consider including the suggested race condition fixes for approve and
transferFrom . If not required by the Golem ecosystem, locking down these methods may
help address an outstanding vulnerability in the ERC20 spec.

❑ Track upstream changes to OpenZeppelin and other dependencies. Hardcoded
library versions leave Golem vulnerable to attacks that are later fixed, and are easily
identified by malicious actors.

❑ Match GolemNetworkToken transfer function with library standard. Allow 0 value
transfers and remove the require condition that causes this to revert the transaction. Do
not return false due to an invalid transfer. Instead, propagate error conditions to cause the
transfer to fail.

❑ Disable transfers to 0 address in batchTransfer. Regular users should not be able to
burn tokens. Revert the entire transaction or handle it appropriately within batch
processing with a consistent response.

❑ Do not emit Mint or Burn events for mundane user operations. The withdraw and
transferToGate functions in the TokenProxy functions should not emit these events for
0-value amounts. Consider removing these events entirely (or renaming them if required
for internal tracking).

❑ Do not allow self transfers inside batchTransfer. This action will delete all of the
user’s tokens included in the transaction.

❑ Remove the hard-coded burn address in GNTDeposit. The current target address is
active and will receive all burnt tokens. Burn tokens by subtracting from the internal
balance manually, outside of the transfer function.

❑ Handle additional deposits into GNTDeposit during an existing timelock . Either
restrict additional deposits during this time, or adjust the lockout window upon receiving
additional deposits. Consider granular locking for individual deposits.

❑ Distinguish timelock deposit events with task identification . Otherwise these events
can be used to trick users into believing a deposit was made on their behalf.

Long Term
❑ Standardize contract versions and dependency management. Implement testing
frameworks and deployment harnesses that will allow for systematic code coverage. Use a
package manager to keep both Golem code and external code up to date

❑ Resolve parity differences between separate token implementations and combine
them. Having multiple implementations with different behaviors substantially increases
complexity and likelihood of future vulnerabilities.

❑ Introduce contract capabilities for managing token economics. Golem should
outline economic considerations of various token markets and consider ways to adjust
inflation, supply, and allocation of tokens in response to live market changes.

❑ Reduce the amount of shared state and independent variable tracking amongst
contracts. Consolidate token logic and management to a central core contract. Don’t
mimic balances elsewhere. Any functions that modify supply and ownership of tokens
should all call into the same contract. Don’t allow external sources to arbitrarily adjust
these values.

❑ Improve the test to include corner cases and unexpected behaviors. The code
includes a good amount of unit tests, but they only cover expected interactions. Create
integration tests to cover all of the intricacies, edge cases, and action sequences that may
occur out of order.

❑ Standardize error propagation handling in token transfers between individuals and
batch operations . Inconsistent behavior between similar operations may lead to client
confusion and loss of tokens.

❑ Solidify and explicitly enforce the penalties and mechanics of the Concent system.
Building around the limitations and requirements of an external verification system will
ensure that the infrastructure is there to address the evolving concerns of a live
deployment.

❑ Document large-picture interactions and scenarios of complicated functions.
Similar to the TokenProxy::Gate docs, a high-level summary of external interactions of a
contract helps contextualize the code for readers and developers.

Findings summary
Title Type Severity

1 Contracts specify outdated compiler
version

Patching Informational

2 Race condition in the ERC20 approve
function may lead to token theft

Timing Medium

3 OpenZeppelin dependencies are not
integrated to track upstream changes

Patching Low

4 User can silently burn tokens in
batchTransfer functions

Data Validation Low

5 Empty accounts can fire Mint and Burn
events

Data Validation Informational

6 Deletion of user tokens in batchTransfer
function

Data Validation High

7 Hardcoded non-zero burn address is
active

Configuration High

8 User can silently burn tokens in the
GNTDeposit withdraw function

Data Validation Medium

9 Depositing tokens in GNTDeposit does
not reset the timelock

Access Controls High

10 Timelock events can be re-used Auditing and
Logging

Low

11 Users can burn their own tokens Authentication Low

12 Burning tokens do not update the
corresponding total supply

Data Validation Medium

13 A single user can stop a batch payment
providing 0x0 as an address

Denial of
Service

Low

1. Contracts specify outdated compiler version
Severity: Informational Difficulty: Undetermined
Type: Patching Finding ID: TOB-Golem-01
Target: All

Description
Golem contracts specify various outdated versions of the Solidity compiler in their pragma
declarations.

The Solidity compiler is under active development. Each new version contains new checks
and warnings for suspect code.

Figure 1: Solidity releases new checks and warnings for suspect code in each new version

Running the latest available compiler (0.4.21 as of this writing) on the Golem contracts
codebase emits warnings that should be fixed.

There are also inconsistencies in the Solidity compiler version requirements between
contracts and their dependencies. For example, GNTDeposit.sol requires Solidity 0.4.16
while TokenProxy.sol uses Solidity 0.4.19 , but imports OpenZeppelin templates that use
0.4.18 .

Recommendations
Ensure that the latest version of Solidity compiles all code without warnings. Compiler
warnings are often indicators of bugs that may only manifest at runtime or under specific
conditions. Newer versions of Solidity emit warnings for a broader set of error-prone
programming practices.

Standardize the version of Solidity required by contracts and their dependencies.

https://github.com/golemfactory/golem-contracts/blob/master/contracts/GNTDeposit.sol#L1
https://github.com/golemfactory/golem-contracts/blob/master/contracts/TokenProxy.sol#L1

2. Race condition in the ERC20 approve function may lead to token the�t
Severity: Medium Difficulty: High
Type: Timing Finding ID: TOB-Golem-02
Target: StandardToken

Description
A known race condition in the ERC20 standard, on the approve function, could lead to the
theft of tokens.

The ERC20 standard describes how to create generic token contracts. Among others, a
ERC20 contract defines these two functions:

● transferFrom(from, to, value)

● approve(spender, value)

These functions give permission to a third party to spend tokens. Once the function
approve(spender, value) has been called by a user, spender can spend up to value
tokens of the user’s by calling transferFrom(user, to, value).

This schema is vulnerable to a race condition when the user calls approve a second time on
a spender that has already been allowed. If the spender sees the transaction containing the
call before it has been mined, then the spender can call transferFrom to transfer the
previous value and still receive the authorization to transfer the new value.

Exploit Scenario

1. Alice calls approve(Bob, 1000) . This allows Bob to spend 1,000 tokens.
2. Alice changes her mind and calls approve(Bob, 500). Once mined, this will

decrease the number of tokens that Bob can spend to 500.
3. Bob sees the transaction and calls transferFrom(Alice, X, 1000) before

approve(Bob, 500) has been mined.
4. If Bob’s transaction is mined before Alice’s, 1000 tokens will be transferred by Bob.

But once Alice’s transaction is mined, Bob can call transferFrom(Alice, X,
500) .Bob has transferred 1500 tokens even though this was not Alice’s intention.

Recommendations
While this issue is known and can have a severe impact, there is no straightforward
solution.

One mitigation is to forbid a call to approve if all the previous tokens are not spent, by
adding a requirement to approve. This solution prevents the race condition but it may
cause unexpected behavior for a third party.

https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729

require(allowed[msg.sender][_spender] == 0)

Another mitigation is the use of a temporal mutex. Once transferFrom has been called for
a user, it needs to prevent a call to approve during the window in which the transaction is
occuring. The user can then verify if someone transferred the tokens. This solution adds
complexity and may also result in unexpected behavior for a third party.

This issue is a flaw in the ERC20 design. It cannot be easily fixed without modifying the
standard and it must to be considered by developers while writing code.

3. OpenZeppelin dependencies do not track upstream changes
Severity: Low Difficulty: Low
Type: Patching Finding ID: TOB-Golem-03
Target: open_zeppelin folder

Description
The BasicToken , ERC20 , ERC20Basic , SafeMath and StandardToken implementations from
OpenZeppelin are copy-pasted into the repository. This makes receiving updates and
security fixes on these dependencies unreliable as they must be updated manually.

Figure 2: OpenZeppelin receives ongoing testing and updates regularly

Exploit Scenario
OpenZeppelin releases a critical fix for a vulnerability in the underlying token
implementations that allow unauthorized withdrawal. An attacker could scan for token
repositories that use hardcoded and outdated copies of the OpenZeppelin base templates
and use the vulnerability against Golem.

Recommendations
Include the OpenZeppelin sources as a submodule in your Git repository so that internal
path consistency can be maintained and updated periodically.

In the long term use an Ethereum development environment and NPM to manage the
package as part of your project. A quick start for OpenZeppelin and Truffle can be found at
https://github.com/OpenZeppelin/zeppelin-solidity#getting-started . This will ensure that
the Golem smart contracts and their dependencies are cohesively managed.

https://github.com/OpenZeppelin/zeppelin-solidity#getting-started

4. User can silently burn tokens in batchTransfer function
Severity: Low Difficulty: High
Type: Data Validation Finding ID: TOB-Golem-05
Target: GolemNetworkTokenBatching

Description
The amount of minted tokens is tracked in the GNTB contract by the totalSupply function
(returning an underlying totalToken variable). Burning tokens is disabled by default in
transfer. ERC20 enforces an explicit call and event to trigger a token burn. However, the
batchTransfer method does not restrict the address destination of address(0) , allowing
tokens to effectively be burned without firing a Burn event or decreasing the totalSupply
variable.

Exploit Scenario
Scenario 1: Alice programmatically interacts with the Golem token network as a legitimate
member. A calculation results in a transfer to the null or empty address of 0. As a result,
Alice loses her tokens.

Scenario 2: Bob is a malicious third party intent on destabilizing the Golem network. He
burns a significant amount of tokens in the GolemNetworkTokenBatching contract to cause
an internal consistency between the amount of tokens in circulation and tracked token
supply count. He can use this information by either manipulating the economics of
additional token minting, or by causing an invariant failure in token supply conditions for a
contract migration.

Recommendation
Add a require condition in batchTransfer that explicitly forbids burning tokens.

In the future, outline the exact circumstances of how token economies are impacted by
concurrent supply. Ensure unit tests verify all ways in which a transfer can affect the
tracked token supply. An inaccurate token count can lead to loss of faith in the the Golem
ledger’s accounting and may reduce trust in the system as a whole.

5. Empty accounts can trigger Mint and Burn events
Severity: Informational Difficulty: Easy
Type: Data Validation Finding ID: TOB-Golem-06
Target: TokenProxy

Description
Both the withdraw and transferFromGate functions do not require the callers to have
non-zero amounts they wish to withdraw or deposit. This allows third parties with no
tokens to call into these functions and trigger arbitrary Mint and Burn events.

If these events are used outside the blockchain to trigger external code, it could produce
unexpected results (e.g., division by zero).

See Appendix D for example Manticore scripts that trigger these findings.

Exploit Scenario
A client application for the Golem network listens to events to calculate remaining token
costs for pending processing jobs. The UI uses the Mint event to calculate how many
tokens are being consumed per job node as a percentage. The 0 value is used in calculating
that, causing an error in the display which breaks the display or causes an unhandled
exception at runtime.

Recommendation
In withdraw add a check for require(balance > 0) . For transferToGate , add a check for
require(value > 0) . Alternatively, re-evaluate the need for Mint and Burn events with the
TokenProxy altogether.

Long term, it’s important to reduce the amount of state required by proxy contracts as
much as possible. Consolidating events and contract semantics in a single area will reduce
the attack surface. By distributing logic and state in both the proxy and token interface, the
complexity of maintaining both systems will grow exponentially.

6. Deletion of user tokens in batchTransfer function
Severity: High Difficulty: Easy
Type: Data Validation Finding ID: TOB-Golem-07
Target: GolemNetworkTokenBatching

Description
When tracking the user’s initial balance during a a batch-transfer request, the value is
stored in a local variable and decremented within the for loop. The transfer completes
successfully if there is enough initial balance to make all the payments, otherwise the entire
transaction is reverted. After successful completion, the user’s balance is set to the
remaining value left in the local variable after having subtracted all payment requests.

The issue occurs when a payment element contains the address of the initiating user
(msg.sender). Despite being incremented in the loop correctly as the recipient,
balances[msg.sender] will be reset and any tokens sent to the initiating user will be
transparently lost.

function batchTransfer (bytes32 [] payments , uint64 closureTime) external {

 require (block . timestamp >= closureTime);

 uint balance = balances [msg . sender];

 for (uint i = 0 ; i < payments . length ; ++ i) {

 // A payment contains compressed data:

 // first 96 bits (12 bytes) is a value,

 // following 160 bits (20 bytes) is an address.

 bytes32 payment = payments [i];

 address addr = address (payment);

 uint v = uint (payment) / 2 ** 160 ;

 require (v <= balance);

 balances [addr] += v ;

 balance ‑= v ;

 BatchTransfer (msg . sender , addr , v , closureTime);

 }

 balances [msg . sender] = balance ;

}

Figure 3: batchTransfer sets the user balance only once after the loop has completed

Exploit Scenario
Alice submits a computationally intensive job to the Golem network. She collaborates
alongside the others working on this job on the Golem network. When time for payment
arrives, Alice’s address is included in the client as a designated payment address. Tokens
sent to her are lost, irrecoverably and silently.

Recommendation
Adding require(addr != msg.sender) inside the loop will be a quick workaround to
mitigate this issue.

The larger concern remains with handling error propagation and recovery in
batchTransfer edge cases (i.e sending to oneself, sending to a null address, insufficient
transfer amount to complete payments). The semantics surrounding multiple batch
transactions should conform to expected behavior of single transaction. Maintaining this
relationship should be an API and security priority.

7. Hardcoded non-zero burn address is active
Severity: High Difficulty: High
Type: Configuration Finding ID: TOB-Golem-08
Target: GNTDeposit

Description
The 0xdeadbeef was designated as a special address that the Concent service can use to
burn tokens in GNTDeposit .

function burn (address _whom , uint256 _burn) onlyConcent external {

 _reimburse (_whom , 0xdeadbeef , _burn);

 Burn (_whom , _burn);

 }

Figure 4: The burn implementation in GNTDeposit

A hardcoded burn address is insecure because it is impossible to know whether the private
key is known and held by an arbitrary address. In this case, the 0xdeadbeef address shows
evidence of activity and recent transactions -- suggesting it is not a safe target for token
burning. If the account ever decided to interact with the Golem network, its balance would
not be unaccounted for in the total token supply metric, and would likely be abnormally
large.

Figure 5: Address 0xdeadbeef is active on mainnet

Exploit Scenario
As the Concent service burns tokens over the course of time, the holder of the 0xdeadbeef
private key notices token activity occurring with their address. They decide to withdraw the
entire burned token supply out of the contract, potentially causing a complete economic
collapse of the Golem ecosystem and a loss of massive amounts of ether.

Recommendation
Do not use a token transfer to manage the bookkeeping of burned tokens. Token burning
should be handled internally by decreasing the existing token supply and user balances.
Refer to OpenZeppelin’s BurnableToken contract on how to implement a compliant burn
operation.

In the future, minting and burning actions that must operate on the total supply of tokens
in a predictable and secure manner will necessitate that these variables are tracked in a
single token location, rather than being distributed amongst various internal
representations.

https://github.com/OpenZeppelin/zeppelin-solidity/blob/master/contracts/token/ERC20/BurnableToken.sol

8. User can silently burn tokens in the GNTDeposit withdraw function
Severity: Medium Difficulty: Low
Type: Data Validation Finding ID: TOB-Golem-09
Target: GNTDeposit

Description
Only the Concent user should be able to burn tokens, but normal users can work around
this restriction using the withdraw function to transfer tokens to the special address
0xdeadbeef . This effectively allows tokens to be burned without firing a Burn event.

function withdraw (address _to) onlyUnlocked external {

 var _amount = balances [msg . sender];

 balances [msg . sender] = 0 ;

 locked_until [msg . sender] = 0 ;

 require (token . transfer (_to , _amount));

 Withdraw (msg . sender , _to , _amount);

}

Figure 6: The withdraw function allows to transfer/burn tokens to 0xdeadbeef by allowing any address
as a parameter

Exploit Scenario
Bob is a malicious third party intent on destabilizing the Golem network. He burns a
significant amount of tokens in the GNTDeposit contract to cause an internal inconsistency
between the amount of tokens in circulation and tracked token supply count. He can use
this discrepancy either to manipulate the economics of additional token minting, or to
cause an invariant failure in token supply conditions for a contract migration.

Recommendation
Implementing the recommended fix in TOB-Golem-08 will prevent regular users from being
able to burn since the 0 address will be reverted by the token transfer.

Since it is possible (and valid) to withdraw a deposit to an account that has not yet been
registered via the gate proxy, ensure that this edge case is handled appropriately in tests
when adding additional functionality.

9. Depositing tokens in GNTDeposit does not reset the timelock
Severity: High Difficulty: Medium
Type: Access Controls Finding ID: TOB-Golem-10
Target: GNTDeposit

Description
The GNTDeposit contract implements a timelock on user accounts to restrict the initial
window that tokens may be withdrawn. However, a user is able to withdraw tokens earlier
than expected since the individual deposit of new tokens is not tracked. After an initial
deposit from a user, the withdrawal period window is not extended for any subsequent
deposits. By manipulating low-cost jobs, it may be possible to pre-empt the waiting period
for a later, higher-cost job.

function onTokenReceived (address _from , uint _amount , bytes /* _data */) public onlyToken {

 balances [_from] += _amount ;

 Deposit (_from , _amount);

}

Figure 7: onTokenReceived does not check or reset the timelock.

Exploit Scenario

1. Bob unlocks his account in the GNTDeposit with no tokens and waits until the unlock
time is about to elapse.

2. Bob submits a computationally intensive job to the Golem network.
3. Alice takes the job but ask for the confirmation of transaction of the payment into

the GNTDeposit .
4. Bob transfers the tokens into his GNTDeposit balance.
5. Alice verifies that deposit and checks that the tokens are effectively time-locked.
6. Alice finishes the job and send the results to Bob.
7. Bob withdraws his tokens since they are no longer timelocked.

Recommendation
One mitigation is to forbid a deposit when the balance is time-locked. Another possible
mitigation is to adjust the corresponding timelock if a user increases his balance during the
window that an existing lock is active, or to have granular locking control over each
individual deposit.

For the future, ensure that penalty actions and the infrastructure supporting token
moderation is appropriately restrictive and exhaustive in scope.

10. Timelock events can be reused
Severity: Low Difficulty: High
Type: Auditing and Logging Finding ID: TOB-Golem-11
Target: GNTDeposit

Description
The GNTDeposit contract implements timelocks in order to prevent users from withdrawing
their tokens for a certain period of time. However, Deposit events do not include
corresponding task information and are indistinguishable from one another. A malicious
user can cite a prior event to deceive a participant into believing that a deposit has been
made into the Concent service.

function onTokenReceived (address _from , uint _amount , bytes /* _data */) public onlyToken {

 balances [_from] += _amount ;

 Deposit (_from , _amount);

}

Figure 8: onTokenReceived does not record any identification string to each Deposit

Exploit Scenario

1. Bob submits a computationally intensive job to the Golem network.
2. Alice accepts that job.
3. Bob deposits tokens in GNTDeposit to satisfy Alice’s prerequisite to use the Concent

service.
4. Bob submits a second computationally intensive job to the Golem network similar to

the first one.
5. Carol accepts the job, also requiring participation in the Concent service.
6. Bob points to his deposit to Alice in GNTDeposit to convince Carol that her tokens

are safe until she finish computing the second job.
7. Bob cancels his job with no penalty and Carol must eat the cost of having done work

for no reason.

Recommendation
This issue can be mitigated by identifying every timelock with its corresponding task and
allowing users to query this information to avoid deposit forgery. There is a bytestring in
the parameter of transferAndCall that can be used to pass additional arguments.

The implementation details of the Concent service must be rigorously applied and
standardized before the Golem network scales. Without a strong and consistent deterrent
against misbehaving clients, nodes will be susceptible to abuse en-masse by freeloaders.

11. Users can burn their own tokens
Severity: Low Difficulty: Low
Type: Authentication Finding ID: TOB-Golem-12
Target: GolemTokenNetworkBatching

Description
Only the Concent user should be allowed to burn tokens from users. However, a user could
work around this restriction using the burn function in GolemTokenNetworkBatching . This
only allows an attacker to burn their own tokens.

Exploit Scenario
Bob is a malicious third party intent on destabilizing the Golem network. He burns a
significant amount of tokens in the TokenProxy contract to cause an internal inconsistency
between the amount of tokens in circulation and tracked token supply count. He can use
this information by either manipulating the economics of additional token minting, or by
causing an invariant failure in token supply conditions for a contract migration.

Recommendations
Specify the Concent user as an additional parameter in the GolemTokenNetworkBatch
contract to validate the user calling the burn in that contract.

Long term, it is strongly recommended to consolidate token logic and management to a
central core contract that allows token creation, burning, and locking.

12. Burning tokens does not update the corresponding total supply
Severity: Medium Difficulty: Low
Type: Data Validation Finding ID: TOB-Golem-13
Target: GolemTokenNetwork , GolemTokenNetworkBatching

Description
The burn function in GolemTokenNetworkBatching does not update the totalSupply in the
GolemTokenNetwork . Since the burned tokens are deleted and no longer associated with
one particular address (e.g. 0x0), the GolemTokenNetwork reports more tokens than it
should. This issue may cause code or logic that depends on the value of totalSupply (for
instance, code that calculates the value of a Golem token) to report an incorrect value.

Exploit Scenario
Bob is a malicious third party intent on destabilizing the Golem network. He burns a
significant amount of tokens in the TokenProxy contract to cause an internal inconsistency
between the amount of tokens in circulation and tracked token supply count. He can use
this information by either manipulating the economics of additional token minting, or by
causing an invariant failure in token supply conditions for a contract migration.

Recommendations
One possible mitigation is to implement a similar function to burn tokens in the
GolemTokenNetwork contract and call it using the token infrastructure from
GolemTokenNetworkBatching . Nevertheless, a naive implementation is not recommended
to avoid other security issues such as TOB-Golem-12 .

In the long term, it is strongly recommended to consolidate token logic and management
to a central core contract that allows token creation, burning, and locking. Rather than
implementing proxy classes that manage internal state independently, migrate users to a
single token instance that is interoperable with all Golem smart contracts. This will ensure
that the consistency is maintained and accurately reflects the tokens in circulation.

13. A user can stop a batch payment by providing 0x0 as an address
Severity: Low Difficulty: High
Type: Denial of Service Finding ID: TOB-Golem-14
Target: GolemTokenNetworkBatching

Description
An attacker can provide the address 0x0 as their own [what?] to cause the revert of
payments performed using batchTransfer . This will cause a temporary denial of service
since it stops the payments for all the other users in the same batch.

Exploit Scenario

1. Alice submits several computationally intensive jobs to the Golem network
2. Bob takes one of the jobs providing the address 0x0 as his own to get his payment.
3. Bob performs the requested computation.
4. Alice waits until there are a large number of payments and uses batchTransfer to

perform them in order to save some gas.

Bob has now blocked the payments for all the users in the batch.

Recommendations
Make sure the code that performs the call to batchTransfer discards any payment to 0x0.
This issue can be mitigated by preventing users from controlling their payment address
used in the batchTransfer function.

A. Vulnerability classifications
Vulnerability Classes

Class Description

Access Controls Related to authorization of users and assessment of rights

Auditing and Logging Related to auditing of actions or logging of problems

Authentication Related to the identification of users

Configuration Related to security configurations of servers, devices or software

Cryptography Related to protecting the privacy or integrity of data

Data Exposure Related to unintended exposure of sensitive information

Data Validation Related to improper reliance on the structure or values of data

Denial of Service Related to causing system failure

Error Reporting Related to the reporting of error conditions in a secure fashion

Arithmetic Related to arithmetic calculations

Patching Related to keeping software up to date

Session Management Related to the identification of authenticated users

Timing Related to race conditions, locking or order of operations

Undefined Behavior Related to undefined behavior triggered by the program

Severity Categories

Severity Description

Informational The issue does not pose an immediate risk, but is relevant to security
best practices or Defense in Depth

Undetermined The extent of the risk was not determined during this engagement

Low The risk is relatively small or is not a risk the customer has indicated is
important

Medium Individual user’s information is at risk, exploitation would be bad for
client’s reputation, moderate financial impact, possible legal
implications for client

High Large numbers of users, very bad for client’s reputation, or serious
legal or financial implications

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploit was not determined during this engagement

Low Commonly exploited, public tools exist or can be scripted that exploit
this flaw

Medium Attackers must write an exploit, or need an in-depth knowledge of a
complex system

High The attacker must have privileged insider access to the system, may
need to know extremely complex technical details or must discover
other weaknesses in order to exploit this issue

B. Code quality recommendations
The following recommendations are not associated with specific vulnerabilities. However,
they enhance readability and may prevent the introduction of vulnerabilities in the future.

Use SafeMath for arithmetic operations

● The OpenZeppelin framework already requires SafeMath as a dependency. Any
operations involving user-supplied arithmetic with respect to balance accounting
and transaction management should be performed with this library.

● Handling and reverting runtime overflows where they occur is superior to relying on
conditional logic in specific function entry points.

Use require instead of revert for verifying single-line conditionals

● In the GolemNetworkToken.sol transfer function, for example.

Do not require token transfer calls

● While returning false is valid per the spec, the OpenZeppelin framework tokens
rely on reverting and throwing on errors -- this should be kept consistent
throughout the entire codebase.

Update use of deprecated keywords with suitable replacements

● Var , throw , constant , etc. are all emitted as compiler warnings (see TOB-Golem-01).

Minimize the code and functions available in the contracts
● A large number of possible operations allows potential attackers to explore the code

for vulnerabilities.

Do not repeat or shadow variable names in different contracts

● Variables such as _token refer to both GolemNetworkToken and
GolemNetworkTokenBatching classes in different contracts.

● GNTDeposit, GolemNetworkToken and TokenProxy all maintain separate instances
of the balances address mapping. In some cases this is inherited from a common
token interface, but sometimes it is declared as a standalone contract member.

https://github.com/golemfactory/golem-contracts/blob/62a1e0dab3baf8e9bff79b653dffa7df5f2d10a0/contracts/GolemNetworkToken.sol#L75

C. Slither static analysis
Trail of Bits has included our Solidity static analyzer, Slither, with this report. Slither works
on the Abstract Syntax Tree (AST) generated by the Solidity compiler and detects some of
the most common smart contract security issues, including:

● The absence of a constructor
● The presence of unprotected functions
● Uninitialized variables
● Unused variables
● Functions declared as constant that change the state
● Deletion of a structure containing a mapping

Slither is an unsound static analyzer and may report false positives. The lack of proper
support for inheritance and some object types (such as arrays) may lead to false positives.

In order to use Slither, simply launch the analysis on the Solidity file:

$ python /path/to/slither.py file.sol

Ensure that import dependencies and libraries, such as OpenZeppelin, can be found by the
solc compiler in the same directory.

D. Manticore formal verification
We reviewed the feasibility of formally verifying the contract with Manticore , a simple,
open-source dynamic EVM analysis tool that takes advantage of symbolic execution.

Symbolic execution allows us to explore program behavior in a broader way than classical
testing methods, such as fuzzing. The central part of our work involved defining plausible
scenarios to analyze the Golem contracts. Such scenarios let Manticore explore how
attackers could manipulate the code and how those manipulations would affect the
contracts.

We defined three scenarios to explore with Manticore. The first and the second ones
requires two users: Alice and Bob. Alice is benevolent. Bob is the attacker. Initially, Alice
holds some GNT tokens and starts to migrate some tokens to the GNTB network. The last
scenario requires only one user holding some GNTB tokens.

● Scenario 1: Alice executes openGate to open a gate and transfer some tokens to it.
Bob will try to steal or interfere with the token migration. We allowed Manticore to
perform two fully symbolic transactions using the GNT contract and check if the
attacker could perform some transactions that altered Alice’s balance.

● Scenario 2: Alice executes openGate to open a gate, transfers some tokens to it and

finishes the migration executing transferFromGate . Bob will try to steal or block
Alice’s tokens. We allowed Manticore to perform fully two symbolic transactions
using the GNTB contract and check if the attacker could perform some transactions
that altered Alice’s balance.

● Scenario 3: The last scenario requires only one user holding some GNTB tokens. Bob

will try to increase, burn or block his own tokens to subvert the balances in the
GNTB contract. We allowed Manticore to perform two fully symbolic transactions
using the methods in the GNTB contracts and check if the attacker could perform
some transactions that altered his balance.

The first scenario can be symbolically explored using the Golem_openGate.py script, the
second one, using the Golem_transferFromGate.py script and the third one using the
Golem_own_tokens.py script. While not demonstrative of vulnerabilities, they provide a
reference for interacting with Golem smart contracts using the Manticore tool. They can
also be useful for re-testing when there is new code to fix these issues.

https://github.com/trailofbits/manticore

TOB-Golem-06: Empty accounts can trigger Mint and Burn events
TOB-Golem-06 can be reproduced using the Golem_zero_mint.py and
Golem_zero_burn.py scripts. The process of minting tokens in the Golem network
comprises a 3-step procedure. A user should (1) open a gate using the openGate, (2)
transfer some ERC20 tokens from a her account the associated gate and (3) call
transferFromGate to finish the procedure. This last transaction will fire the Mint event
announcing the amount of tokens minted. The Golem_zero_mint.py script reproduces the
issue of firing Mint event with no tokens. After running the script, we can observe this issue
in this list of ethereum transactions:

…

Transactions Nr. 4

From: 0xf522dfdc3f12cc0c75ffbff51e5876bf982e52b2

To: 0x5074d85b9194e696cc596130ffe95f02eaa1c3df

Function call: openGate() ‑> STOP

Transactions Nr. 5

From: 0xf522dfdc3f12cc0c75ffbff51e5876bf982e52b2

To: 0x5074d85b9194e696cc596130ffe95f02eaa1c3df

Function call: transferFromGate() ‑> STOP

It is also possible to burn Golem tokens using the withdraw function indicating the amount
of tokens to burn. This transaction will fire the Burn event announcing the amount of
tokens minted. The Golem_zero_burn.py script reproduces the issue of firing a Burn event
with no tokens. After running the script, we can observe this issue in this list of ethereum
transactions:

...

Transactions Nr. 4

From: 0xf522dfdc3f12cc0c75ffbff51e5876bf982e52b2

To: 0x5074d85b9194e696cc596130ffe95f02eaa1c3df

Function call: withdraw(0) ‑> STOP

TOB-Golem-07: Deletion of user tokens in batchTransfer function
TOB-Golem-07 can be reproduced using the Golem_batchTransfer_burn.py script. Using
it, Manticore initializes the contracts and creates an account (with the address
0x75ffbff51e5876bf982e524e5a695365d51f264a) that holds 1000 tokens. Then, the
account performs a call to batchTransfer to pay 1000 tokens (encoded as “ \x03\xe8u ”) to
itself (encoded as “ \xff\xbf\xf5\x1eXv\xbf\x98.RNZiSe\xd5\x1f&J ”). Finally, Manticore
checks the balance of the account to verify that it has no tokens. After running the script,
we can observe this issue in this list of ethereum transactions:

…

Transactions Nr. 9

From: 0x75ffbff51e5876bf982e524e5a695365d51f264a

To: 0x5074d85b9194e696cc596130ffe95f02eaa1c3df

Function call: balanceOf(0x75ffbff51e5876bf982e524e5a695365d51f264a) ‑>

RETURN

return: 1000

Transactions Nr. 10

From: 0x75ffbff51e5876bf982e524e5a695365d51f264a

To: 0x5074d85b9194e696cc596130ffe95f02eaa1c3df

Function call:

batchTransfer('\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\xe8u\xff\xb

f\xf5\x1eXv\xbf\x98.RNZiSe\xd5\x1f&J',0) ‑> STOP

Transactions Nr. 11

From: 0x75ffbff51e5876bf982e524e5a695365d51f264a

To: 0x5074d85b9194e696cc596130ffe95f02eaa1c3df

Function call: balanceOf(0x75ffbff51e5876bf982e524e5a695365d51f264a) ‑>

RETURN

return: 0

E. Issues discovered in GolemNetworkToken
In the process of the security review, Trail of Bits discovered two issues related to the
transfer function of the already deployed GolemNetworkToken (GNT) contract. These
issues may affect the internal consistency of the remaining contracts, since GNT is directly
or indirectly called by them. Additionally, the transfer function is an integral part of any
token system, so we decided to include these additional issues in this special section.

Token transfer not ERC20 compliant
The GNT implementation mimics ERC20 behavior and maintains partial parity with the
underlying GNTBatch token proxy which aims for ERC20 compliance. As a result, Transfer
events are expected from both classes every time a transaction occurs. However the GNT
implementation disallows transfer values of 0, which is explicitly required by the ERC20
spec , and so does not fire a Transfer event when this scenario occurs. In addition, the
return of a false value is not required due to revert conditions on transfer failure.

function transfer (address _to , uint256 _value) returns (bool) {

 // Abort if not in Operational state.

 if (funding) revert ();

 var senderBalance = balances [msg . sender];

 if (senderBalance >= _value && _value > 0) {

 senderBalance ‑= _value ;

 balances [msg . sender] = senderBalance ;

 balances [_to] += _value ;

 Transfer (msg . sender , _to , _value);

 return true ;

 }

 return false ;

}

Figure 9: Function returns false and does not fire the Transfer event if _value == 0

Exploit Scenario
Bob uses a third-party exchange client to attempt purchase of Golem network tokens. The
client relies on an initial 0 value transfer to establish a handshake and verify successful
interaction with the token contract. It cannot complete the transaction. Depending on
implementation, Bob may lose ether as a result of the unexpected behavior.

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md#Events
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md#Events

Recommendations
Remove the check condition that enforces _value > 0 . Do not return false as a valid
boolean result. Instead, rely on the revert conditions to cause transfer to fail.

In the long term, thought must be given to the viability of maintaining two separate tokens
with implementation differences that must maintain 1-to-1 parity. At the very least, sharing
a single base template will help in maintaining development standards and ensure uniform
application of best practices.

User can silently burn tokens in GNT transfer functions
The amount of minted tokens is tracked in the GNT contract by the totalSupply function
(returning an underlying totalToken variable). This value is used during the migration
contract and is tracked by the TokenProxy class as well . Burning tokens is disabled by
default in transfer. ERC20 enforces an explicit call and event to trigger a token burn.
However, this method in GolemNetworkToken does not restrict the address destination of
address(0) , allowing tokens to effectively be burned without firing a Burn event or
decreasing the totalSupply variable.

function transfer (address _to , uint256 _value) public returns (bool) {

 require (_to != address (0));

 require (_value <= balances [msg . sender]);

Figure 10: ERC20 BasicToken does not allow transfers/burns to address(0)

Exploit Scenario
Scenario 1: Alice programmatically interacts with the Golem token network as a legitimate
member. A calculation results in a transfer to the null or empty address of 0. As a result,
Alice loses her tokens.

Scenario 2: Bob is a malicious third party intent on destabilizing the Golem network. He
burns a significant amount of tokens in the TokenProxy contract to cause an internal
consistency between the amount of tokens in circulation and tracked token supply count.
He can use this information by either manipulating the economics of additional token
minting, or by causing an invariant failure in token supply conditions for a contract
migration.

Recommendation
Add a require condition in transfer that explicitly forbids burning tokens.

In the future, outline the exact circumstances of how token economies are impacted by
concurrent supply. Ensure unit tests verify all ways in which a transfer can affect the
tracked token supply. An inaccurate token count can lead to loss of faith in the the Golem
ledger’s accounting and may reduce trust in the system as a whole.

https://github.com/golemfactory/golem-contracts/blob/62a1e0dab3baf8e9bff79b653dffa7df5f2d10a0/contracts/TokenProxy.sol#L102-L120
https://github.com/golemfactory/golem-contracts/blob/62a1e0dab3baf8e9bff79b653dffa7df5f2d10a0/contracts/TokenProxy.sol#L102-L120
https://github.com/golemfactory/golem-contracts/blob/62a1e0dab3baf8e9bff79b653dffa7df5f2d10a0/contracts/TokenProxy.sol#L102-L120

F. Fix Log
Golem made the following modifications to their codebase as a result of the assessment.
Each of the fixes was verified by the audit team. The reviewed code is available in git
shortcode: 4e50ca2c .

ID Title Severity Status

1 Contracts specify outdated compiler version Informational Fixed

2 Race condition in the ERC20 approve function may lead
to token theft

Medium Fixed

3 OpenZeppelin dependencies do not track upstream
changes

Low Not Fixed

4 User can silently burn tokens in batchTransfer function Low Fixed

5 Empty accounts can trigger Mint and Burn events Informational Fixed

6 Deletion of user tokens in batchTransfer function High Fixed

7 Hardcoded non-zero burn address is active High Fixed

8 User can silently burn tokens in the GNTDeposit
withdraw function

Medium Fixed

9 Depositing tokens in GNTDeposit does not reset the
timelock

High Partial

10 Timelock events can be re-used Low Not Fixed

Issue 9 has a partial fix that reduces the severity from high to low. Note that issues 11, 12,
and 13 were discovered during the retest and therefore fixes for them were not reviewed.

https://github.com/golemfactory/golem-contracts/tree/4e50ca2cba13d99219f5b71dc58e9fe3c0efabfc

Detailed Fix Log
Finding 1: Contracts specify outdated compiler version
Fixed by updating all the contracts to Solidity version 0.4.21.
https://github.com/golemfactory/golem-contracts/commit/1af6431b214cb75d7bec0604d5f
f3e7a2d5f55c0

Finding 2: Race condition in the ERC20 approve function may lead to token theft
Fixed. User cannot make subsequent calls to approve until the previously approved tokens
have all been transferred.
https://github.com/golemfactory/golem-contracts/commit/ec5e6ab223eff61523e47cae7f59
dcb024c73369

Finding 3: OpenZeppelin dependencies do not track upstream changes
Not fixed.

Finding 4: User can silently burn tokens in batchTransfer functions
Fixed. The token transfer functions in GolemTokenNetworkBatch and GNTDeposit no longer
allow transfers to the 0x0 address. Note, users can still burn their tokens using transfer in
GolemNetworkToken .
https://github.com/golemfactory/golem-contracts/commit/84df986928dc69efcf23902f164a
2070dbda725f

Finding 5: Empty accounts can trigger Mint and Burn events
Fixed. Burning tokens now requires a strictly positive balance. Minting of
zero tokens will trigger a revert.
https://github.com/golemfactory/golem-contracts/commit/817973c0b060182084bdc11b68
4838e1cbc32148

Finding 6: Deletion of user tokens in batchTransfer function
Fixed by avoiding a transfer to yourself or to address 0x0.
https://github.com/golemfactory/golem-contracts/commit/b90a2912253aa14f9f1466612a0
e895622dd34f9

Finding 7: Hardcoded non-zero burn address is active
Fixed by using BurnableTokens from OpenZeppelin, which defines a new method to burn
ERC20 tokens using the burn function. It does not implement this functionality using a
particular address to transfer burned tokens.
https://github.com/golemfactory/golem-contracts/commit/3a95a27953234a0b767353cc1cb
d8f5d41140d04

Finding 8: User can silently burn tokens in the GNTDeposit withdraw function.

https://github.com/golemfactory/golem-contracts/commit/1af6431b214cb75d7bec0604d5ff3e7a2d5f55c0
https://github.com/golemfactory/golem-contracts/commit/1af6431b214cb75d7bec0604d5ff3e7a2d5f55c0
https://github.com/golemfactory/golem-contracts/commit/ec5e6ab223eff61523e47cae7f59dcb024c73369
https://github.com/golemfactory/golem-contracts/commit/ec5e6ab223eff61523e47cae7f59dcb024c73369
https://github.com/golemfactory/golem-contracts/commit/84df986928dc69efcf23902f164a2070dbda725f
https://github.com/golemfactory/golem-contracts/commit/84df986928dc69efcf23902f164a2070dbda725f
https://github.com/golemfactory/golem-contracts/commit/817973c0b060182084bdc11b684838e1cbc32148
https://github.com/golemfactory/golem-contracts/commit/817973c0b060182084bdc11b684838e1cbc32148
https://github.com/golemfactory/golem-contracts/commit/b90a2912253aa14f9f1466612a0e895622dd34f9
https://github.com/golemfactory/golem-contracts/commit/b90a2912253aa14f9f1466612a0e895622dd34f9
https://github.com/golemfactory/golem-contracts/commit/3a95a27953234a0b767353cc1cbd8f5d41140d04
https://github.com/golemfactory/golem-contracts/commit/3a95a27953234a0b767353cc1cbd8f5d41140d04

Fixed by avoiding the use of 0x0 as an address for withdrawals.
https://github.com/golemfactory/golem-contracts/commit/84df986928dc69efcf23902f164a
2070dbda725f

Finding 9: Depositing tokens in GNTDeposit does not reset the timelock
Partially fixed by resetting a timelock after a deposit. Nevertheless, users need to
check that a timelock deposit is not near expiration. This reduces the severity of the issue
from High to Low.
https://github.com/golemfactory/golem-contracts/commit/4e50ca2cba13d99219f5b71dc58
e9fe3c0efabfc

Finding 10: Timelock events can be re-used
Not fixed. Golem said that they are aware of the issue and it can be treated as by design
since deposits were never meant to be per task. Golem also indicated they applied
mitigations for this issue off-chain.

https://github.com/golemfactory/golem-contracts/commit/84df986928dc69efcf23902f164a2070dbda725f
https://github.com/golemfactory/golem-contracts/commit/84df986928dc69efcf23902f164a2070dbda725f
https://github.com/golemfactory/golem-contracts/commit/4e50ca2cba13d99219f5b71dc58e9fe3c0efabfc
https://github.com/golemfactory/golem-contracts/commit/4e50ca2cba13d99219f5b71dc58e9fe3c0efabfc

