Parity

Security Assessment

Parity Technologies
July 22, 2018

Prepared For:
Raul Romanutti | Parity Technologies

raul@parity.io

Prepared By:
Josselin Feist | Trail of Bits
josselin@trailofbits.com

Jay Little | Trail of Bits
jay@trailofbits.com

Andy Ying | Trail of Bits
andy@trailofbits.com

Changelog
February 23, 2018: Initial report delivered
June 15, 2018: Added Appendix D with retest results

July 6, 2018: Added additional retest results

mailto:raul@parity.io
mailto:josselin@trailofbits.com
mailto:jay@trailofbits.com
mailto:andy@trailofbits.com

Executive Summary

Engagement Goals & Scope

Coverage

Project Dashboard

Rust Recommendations Summary
Short Term

Long Term

Smart Contracts Recommendations Summary
Short Term

Long Term

Rust Findings Summary

Rust Findings
1. Key files may be deleted without authorization during wallet import

2. Rust-crypto is not recommended for security-critical usage

3. HMAC comparison in do_decrypt is vulnerable to timing attacks

4. "single message" crypto operations lack authentication due to using AES-CTR
5

6

7

. Deserialized address field in SafeAccount is not properly sanitized
. Content-Security-Policy is overly permissive
. Confidential information resides in memory for too long

8. Parity executables on Windows lack code signatures

Solidity Findings Summary

Solidity Findings
1. Re-entrancy may lead to stolen ethers
. Missing loop iteration leads to non-removable validator
. Incorrect interface implementation leads to unexpected behavior
. Incorrect conditional prevents fork rejection
. Uninitialized value leads to an unmodifiable owners list
. Race condition may preempt an Ethereum address to email association
. Incorrect interfaces may lead to unexpected behavior
. Incorrect authorization prevents the calling of reporting functions
9. “Unrequired” clients can remove a “required” client’s privilege
10. Missing contract existence check may cause unexpected behavior
11. Race condition may lead to content compromise
12. Fork re-proposition may prevent owners from accepting or rejecting a fork

00 |N O U | [WN

13. Owners cannot accept or reject re-proposed transactions

14. Lack of argument validation may lead to incorrect deletion of badge information
15. Deleting clients may lead to incorrect getter values

16. Deleting entries may lead to incorrect getter value (SimpleRegistry)

17. Deleting dapps may lead to incorrect getter value (DappReg)

18. Deleting badges may lead to incorrect getter value (BadgeReg)

19. Empty keyServerlp may lead to incorrect keyServerslList

20. Contracts specify outdated compiler version

A. Vulnerability Classifications

B. Code Quality Recommendations

C. Slither

D.Fix Log

Rust Fix Log
Solidity Fix Log

Detailed Issue Discussions

About Trail of Bits

Executive Summary

From January 8 to February 23, Parity Technologies engaged with Trail of Bits to assess
targeted components of the Parity wallet and specific smart contracts. The assessed Parity
wallet components were written in Rust and JavaScript while the smart contracts were
written in Solidity. Trail of Bits conducted this assessment over the course of twelve
person-weeks with three engineers.

Trail of Bits completed the assessment using manual, static, and dynamic analysis
techniques. The first and second weeks were spent gaining a deep understanding of the
ethstore, ethkey, ethcrypto, rpc, and smart contracts codebase and identifying common
flaws. In the third and fourth week, we reviewed specific RPC modules, the crypto
components, and smart contracts for issues related to data validation, access controls,
authentication, cryptography, inheritance, and memory management. During the last two
weeks, we continued reviewing smart contracts and Rust modules with additional vigilance
concerning data exposure, configuration, and timing issues.

The assessment identified a variety of issues in Parity. The most severe issues may lead to
the theft of ethers and the unauthorized deletion of wallets. Other reported issues involved
various implications of errors in configuration, cryptography, data validation, and memory
management as well as incorrect assumptions regarding timing and contract interfaces.

The Rust code reviewed is of great quality, written with an excellent grasp of idiomatic Rust,
and an awareness of security considerations. Code comments are a bit sparse but does not
adversely affect the readability of the code. However, the code could make better use of
proper primitives for sensitive comparisons in cryptography-related code.

The Solidity code reviewed could use improvement in many areas. The codebase would
benefit from unit testing and more detailed documentation. Restructuring contract
inheritance and proper use of interfaces would benefit several smart contracts. Effort could
be applied to homogenize the codebase by adopting a single coding standard and
standardizing on a single Solidity version.

Parity should correct the identified security issues, improve documentation, create unit
tests, and consider applying the code quality recommendations. Parity should also consider
re-deploying fixed versions of flawed smart contracts.

Trail of Bits has included its Solidity static analyzer, Slither, with the report. Slither detects
security flaws in smart contracts, and would have identified multiple flaws described in this
report. Using static analysis tools such as Slither to validate code changes may prevent the
introduction of future vulnerabilities. Appendix C provides additional details about Slither.

https://github.com/paritytech/parity/tree/364bf48ceff0359a3765de1cf4b15925b66dab25/ethstore/src
https://github.com/paritytech/parity/tree/364bf48ceff0359a3765de1cf4b15925b66dab25/ethkey/src
https://github.com/paritytech/parity/tree/364bf48ceff0359a3765de1cf4b15925b66dab25/ethcrypto/src
https://github.com/paritytech/parity/tree/364bf48ceff0359a3765de1cf4b15925b66dab25/rpc/src

Engagement Goals & Scope

The goal of the engagement was to evaluate the security of the Parity wallet and smart
contracts with the focus on answering the following questions:

Are the key-generation procedures correct and adherent to modern best practices?
Do the cryptography components adhere to modern best practices?

Are the private keys confidential?

Are account management operations properly authorized and authenticated?

Are restricted JSON-RPC methods accessible without sufficient permissions?

Is the ability to intercept communications between core Parity nodes and the Ul
limited?

Is HTTP/WebSocket access to nodes only possible through interfaces that are
intentionally exposed?

Is it possible for an attacker to steal ethers from a smart contract?

Is it possible to block a smart contract in a particular state?

Do the smart contracts behave as expected? Is the RelaySet smart contract secure?

Scope for the engagement included beta branch of Parity, the parity-1.8 branch of the
jsonrpc library, and the master branch of the contracts repo, specifically the following code:

Functionality Area Components

Key Generation and
Storage

crypto module
key generation module
key storage module

ijs module

RPC

jsonrpc-http-server
jsonrpc-ws-server
parity-rpc module (subset that manages private keys)

Smart Contracts'

KeyServerSet

Operations
Badge contracts

Urlhint
RelaySet
InnerOwnedSet
SimpleRegistrar
SimpleCertifier

' Note: the Parity multi-sig wallet smart contract code was not in scope for this engagement.

https://github.com/paritytech/parity/tree/master/ethcrypto
https://github.com/paritytech/parity/tree/master/ethkey
https://github.com/paritytech/parity/tree/master/ethstore
https://github.com/paritytech/parity/tree/master/js
https://github.com/paritytech/jsonrpc/tree/master/http
https://github.com/paritytech/jsonrpc/tree/master/ws
https://github.com/paritytech/parity/tree/master/rpc
https://github.com/paritytech/contracts/blob/master/KeyServerSet.sol
https://github.com/paritytech/contracts/blob/master/Operations.sol
https://github.com/paritytech/contracts/blob/master/SMSVerification.sol
https://github.com/paritytech/contracts/blob/7defba32ebe2c63876b8b47949f971899d512c85/GithubHint.sol
https://github.com/paritytech/contracts/blob/master/validator_contracts/interfaces/RelaySet.sol
https://github.com/paritytech/contracts/blob/master/validator_contracts/InnerOwnedSet.sol
https://github.com/paritytech/contracts/blob/master/SimpleRegistry.sol
https://github.com/paritytech/contracts/blob/619b1b52318e8ad58431b568883382fddc33995c/SimpleCertifier.sol

Coverage

Most of the Rust review was devoted to ethkey, ethcrypto, and ethstore. On the smart
contracts side, the primary focus was on Operations.sol and certifier-related contracts
(ProofOfEmail.sol, SMSVerification.sol, and SimpleCertifier.sol).

Ethkey module. We reviewed the random, prefix, and brain key generation methods for
flaws such as weak entropy and adherence to cryptographic best practices.

Ethcrypto module. We reviewed the aes and ECDH/ECIES modules as well as the key
derivation functions for issues related to data exposure and adherence to cryptographic
best practices.

Ethstore module. We reviewed the account and vault-management functions for issues
related to data exposure, data validation, access controls, and authentication. In addition,
we investigated the cryptographic components of vault and key files. We ensured that the
cryptographic components adhered to best practices.

JS module. We used dynamic analysis to examine the Javascript code for data validation
issues in account and vault metadata, with a focus on issues that may lead to cross-site
scripting (XSS) vulnerabilities. Due to time constraints, we did not review the JS module for
issues related to communication interception between core Parity nodes and the Ul.

RPC components. We reviewed the WebSocket RPC authentication mechanism for
authentication bypass flaws. Additionally, we examined the RPC function tasked with
confirming raw transactions (specifically the RLP decoder). Due to time constraints, we did
not finish our investigation into both the WebSocket RPC authentication mechanism and
the transaction confirmation process, nor did we review the JSON-RPC HTTP/WS server.

Smart contracts. We analyzed BadgeReg.sol, DappReg.sol, GithubHint.sol,

key servers set.sol, InnerOwnedSet.sol, Operations.sol, ProofOfEmail.sol, RelaySet.sol,
SimpleCertifier.sol, SimpleRegistry.sol, and SMSVerification.sol. We looked for common
Solidity flaws, such as integer overflows, re-entrancy vulnerabilities, and unprotected
functions. We also looked for more nuanced flaws, such as logical errors and race
conditions. We checked the contracts for errors in memory management and verified
proper use of contract inheritance. The high number of issues found in these areas of
concern may imply the presence of other vulnerabilities. Due to time constraints, we did
not assess the contracts for potential denial of service due to high gas consumption.

https://github.com/paritytech/parity/tree/364bf48ceff0359a3765de1cf4b15925b66dab25/ethkey/src
https://github.com/paritytech/parity/tree/364bf48ceff0359a3765de1cf4b15925b66dab25/ethcrypto/src
https://github.com/paritytech/parity/tree/364bf48ceff0359a3765de1cf4b15925b66dab25/ethstore/src
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/Operations.sol
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/ProofOfEmail.sol
https://github.com/paritytech/contracts/blob/619b1b52318e8ad58431b568883382fddc33995c/SMSVerification.sol
https://github.com/paritytech/contracts/blob/619b1b52318e8ad58431b568883382fddc33995c/SimpleCertifier.sol
https://github.com/paritytech/parity/blob/364bf48ceff0359a3765de1cf4b15925b66dab25/ethkey/src/random.rs
https://github.com/paritytech/parity/blob/364bf48ceff0359a3765de1cf4b15925b66dab25/ethkey/src/prefix.rs
https://github.com/paritytech/parity/blob/364bf48ceff0359a3765de1cf4b15925b66dab25/ethkey/src/brain.rs
https://github.com/paritytech/parity/blob/364bf48ceff0359a3765de1cf4b15925b66dab25/ethcrypto/src/lib.rs#L147
https://github.com/paritytech/parity/blob/364bf48ceff0359a3765de1cf4b15925b66dab25/ethcrypto/src/lib.rs#L147
https://github.com/paritytech/parity/blob/364bf48ceff0359a3765de1cf4b15925b66dab25/ethcrypto/src/lib.rs#L177
https://github.com/paritytech/parity/blob/364bf48ceff0359a3765de1cf4b15925b66dab25/ethcrypto/src/lib.rs#L201
https://github.com/paritytech/parity/blob/364bf48ceff0359a3765de1cf4b15925b66dab25/ethcrypto/src/lib.rs#L111-L144
https://github.com/paritytech/parity/blob/364bf48ceff0359a3765de1cf4b15925b66dab25/ethcrypto/src/lib.rs#L111-L144
https://github.com/paritytech/parity/blob/364bf48ceff0359a3765de1cf4b15925b66dab25/ethstore/src/account/crypto.rs
https://github.com/paritytech/parity/blob/364bf48ceff0359a3765de1cf4b15925b66dab25/ethstore/src/account/crypto.rs
https://github.com/paritytech/jsonrpc/tree/master/http
https://github.com/paritytech/jsonrpc/tree/master/ws
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/BadgeReg.sol
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/DappReg.sol
https://github.com/paritytech/contracts/blob/7defba32ebe2c63876b8b47949f971899d512c85/GithubHint.sol
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/secret_store/key_servers_set.sol
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/validator_contracts/InnerOwnedSet.sol
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/Operations.sol
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/ProofOfEmail.sol
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/validator_contracts/interfaces/RelaySet.sol
https://github.com/paritytech/contracts/blob/619b1b52318e8ad58431b568883382fddc33995c/SimpleCertifier.sol
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/SimpleRegistry.sol
https://github.com/paritytech/contracts/blob/619b1b52318e8ad58431b568883382fddc33995c/SMSVerification.sol

Project Dashboard

Application Summary

Name Parity

Version 364bf48c, 619b1b52, 7defba32, cd115965
Type Wallet, Smart contract

Platform Rust, Solidity, Javascript

Engagement Summary

Dates January 8 to February 23, 2018

Method Whitebox

Consultants Engaged 3

Level of Effort 12 person-weeks
Vulnerability Summary

Total High Severity Issues 3 Ll

Total Medium Severity Issues 13 SEEEEEEE
Total Low Severity Issues 10 |WrEEmEm

Total Informational Severity Issues 2 u

Total Undetermined Severity Issues 0

Total |28

Category Breakdown

Access Controls 1 =

Configuration 1 u

Cryptography 5 |= u

Data Validation 16 EEEEEEEEN
Patching 1

Undefined Behavior 2 |m

Timing 2

Total |28

https://github.com/paritytech/parity/tree/364bf48ceff0359a3765de1cf4b15925b66dab25
https://github.com/paritytech/contracts/tree/619b1b52318e8ad58431b568883382fddc33995c
https://github.com/paritytech/contracts/tree/7defba32ebe2c63876b8b47949f971899d512c85
https://github.com/paritytech/contracts/tree/cd115965ac3d7af28bf1daec1a20bf62acf753ea

m dapps ® SimpleCertifier.sol / SMSVerification.sol ®m Operations.sol

® InnerOwnedSet.sol / RelaySet.sol = GithubHint.sol = SimpleRegistry.sol
DappReg.sol ® BadgeReg.sol = ethstore ® ethcrypto ® ProofOfEmail.sol

m key_servers_set.sol = All smart contracts ® Parity Windows installation

Rust Recommendations Summary

Short Term

Q Explicitly whitelist valid sources in the Content Security Policy. The current policy is
too permissive and does not protect the user from some attacks.

U Use a constant-time string comparison for sensitive string comparisons in
Crypto: :do_decrypt. Non-constant-time comparisons expose the code to timing attacks.

U Move to AES-GCM or another authenticated cipher mode in the ECIES module.
AES-CTR is malleable, so attackers could modify messages in some circumstances.

0 Generate a new UUID for imported accounts and verify that there are no conflicts
during account import. Identical UUIDs encountered during wallet imports may lead to
wallet deletion.

Q Do not trust the value of address when loading KeyFiles from the root vaulit.
Consider protecting the root vault with a password by default, and warning the user about
the consequences of an unprotected root vault.

O Implement the Drop trait for objects holding confidential content. An information
leak may exist if sensitive contents in memory are not cleared.

U Ensure that all binaries included in the Parity installation are digitally signed. The
lack of signing may allow an attacker to tamper with the binary and hinders endpoint
security efforts.

Long Term

Q Sign all Windows executables with SHA1 and SHA2. Signing with only SHA1 presents a
security risk. Using multiple signatures prevents length-extension attacks. Signing with
SHA1 and SHAZ2 is required by Windows 7 and later to treat an executable as signed.

U Develop guidelines and policies to better identify and handle untrusted input.
Assume that all inputs may be malicious and sanitize them.

U Eliminate the cryptographic dependency on unreviewed crypto libraries. Parity
depends on rust-crypto and libsecp256k1. Neither rust-crypto or libsecp256k1 have been
highly reviewed, formally proven, or thoroughly researched. Consider conducting a detailed
security assessment of these libraries or migrating to more highly reviewed alternatives.

10

https://crates.io/crates/rust-crypto
https://github.com/bitcoin-core/secp256k1
https://crates.io/crates/rust-crypto
https://github.com/bitcoin-core/secp256k1

Smart Contracts Recommendations Summary

Short Term

U Change the loop iteration condition in the OwnedSet constructor. The constructor
loop does not include the last initial validator.

0 Rename get to getData in SimpleCertifier.sol and SMSVerification.sol and define
Certifier as an interface. Inconsistencies in the contract interfaces may lead to
unexpected behavior for third-party applications or contracts.

Q Prevent forks from being re-proposed in Operations. A fork re-proposition will
prevent some owners from voting on a fork.

U Prevent getters from accessing deleted objects. Operations, SimpleRegistry,
DappReg and BadgeReg getters can return data from deleted objects. This may lead to
unexpected behavior for a third-party.

U Change the condition in the Operations.only_unratified modifier. In its current
state, the modifier prevents a fork from being rejected.

U Initialize outersSet in InnerOwnedSet. outerSet is uninitialized and cannot be changed
in InnerOwnedSet. This breaks InnerOwnedSet features.

U Make GithubHint.hint and GithubHint.hintURL return a boolean denoting the
function'’s success and throw an error in case of error. The user should be alerted if
these functions fail. This would mitigate a race condition attack.

U Use the sender address from the ProofOfEmail request for the confirmation
process. A race condition may allow an attacker to fraudulently change the email address
associated with the sender ethereum address; additional checks are therefore needed.

U Remove ReverseRegistry and Certifier from ProofOfEmail.sol and import the
contracts from Registry.sol and Certifier.sol. The current state of the contracts is
inconsistent with their original versions.

U Prevent an Operations’s client from transferring its name to a client address

already associated with a name. An unauthorized client is able to drop the authorization
of another client by transferring its name.

11

U Prevent transactions from being re-proposed. A transaction re-proposition will
prevent some owners from voting on a transaction.

Q Ensure that KeyServerSet.addKeyServer is not applied to an empty-string IP.
Empty-string IPs will create invalid entries in the KeyServerSet.

U Remove the inline assembly code in OuterSet. The inline assembly code lacks security

checks that are provided by Solidity primitives.

Q In operation.checkProxy, delete the transaction from proxy before its execution.
Executing the transaction before its deletion may lead to a re-entrancy attack.

U Ensure that badge registration and unregistration only happens on valid names
and addresses. The current lack of parameter validation in BadgeReg may to lead to a
corrupt badges list.

U Ensure that all code can be compiled without warnings with the latest version of
the Solidity compiler. This will ensure that any new checks are utilized and all warnings
are surfaced appropriately.

12

Long Term

U Avoid state changes after an external call. Apply the check-effects-interactions pattern
to prevent re-entrancy vulnerabilities.

Q Carefully review the Solidity documentation. In particular, any section that contains a
warning must be carefully understood since it may lead to unexpected or unintentional
behavior.

Q Check all function parameters for all unexpected values. The lack of checks on
function parameters may lead to broken function behavior.

U Consider that all the information is public before being accepted on the
blockchain. Data sent to Ethereum is public and can be read and used by anyone -- even
before being executed by the blockchain.

U Create unit tests for all Solidity code. Ensure that unit tests properly cover all the
features of the contract. High unit test coverage enables earlier detection of vulnerabilities
and identifies issues added through code modifications.

U Do not copy and paste code; import instead. Several issues were introduced by
copying code from another Solidity file.

U Avoid inline assembly code where possible. Writing assembly code is complex and
may introduce vulnerabilities.

U Document the expected behavior of smart contracts. Write documentation for each
contract, including its expected behavior. Proper documentation aids code reviews and

helps identify deviations from expected behavior.

U Ensure that all variables are initialized. Uninitialized variables will lead to unexpected
behavior and may introduce vulnerabilities.

U Ensure that all variables are used. Unused variables should be removed since they add
unnecessary complexity and cost for the contract.

13

http://solidity.readthedocs.io/en/develop/security-considerations.html?#use-the-checks-effects-interactions-pattern
http://solidity.readthedocs.io/en/develop/index.html

Rust Findings Summary

Title Type Severity
Key files may be deleted without Data Validation High
authorization during wallet import

Rust-crypto is not recommended for Cryptography High
security-critical usage

HMAC comparison in do_decrypt is Cryptography Medium
vulnerable to timing attacks

"single message" crypto operations lack Cryptography Medium
authentication due to using AES-CTR

Deserialized address field in SafeAccount | Data Validation Medium
is not properly sanitized

Content-Security-Policy is overly Configuration Low
permissive

Confidential information resides in Cryptography Low
memory for too long

Parity executables on Windows lack code | Cryptography Low

signatures

14

Rust Findings

1. Key files may be deleted without authorization during wallet import

Severity: High Difficulty: High
Type: Data Validation Finding ID: TOB-Parity-014
Target: ethstore/src/dir/disk.rs, ethstore/src/ethstore.rs

Description
Importing two wallets with the same account ID in rapid succession (within a second) will
result in the unauthorized deletion of the earlier-imported wallet.

When a wallet is imported into Parity, it is stored on the filesystem with a dynamically
generated name. The filename is generated in DiskDirectory: :insert (disk.rs#L205) and
consists of a second-granularity timestamp and an account ID.

fn insert(&self, account: SafeAccount) -> Result<SafeAccount, Error> {
// build file path
let filename = account.filename.as_ref().cloned().unwrap_or_else(|| {
let timestamp = time::strftime("%Y-%m-%dT%H-%M-%S",
&time::now_utc()).expect("Time-format string is valid.");
format! ("UTC--{}Z--{}", timestamp, Uuid::from(account.id))
3

self.insert_with_filename(account, filename)

Figure 1: The insert implementation

The account ID is a UUID that is taken directly from a JSON file uploaded by the user
(ethstore.rs#L161). There are no checks to verify that the uploaded account ID does not
conflict with the existing account IDs.

fn import_wallet(&self, vault: SecretVaultRef, json: &[u8], password: &str)
-> Result<StoreAccountRef, Error> {

let json_keyfile = json::KeyFile::load(json).map_err(|_|
Error::InvalidKeyFile("Invalid JSON format".to_owned()))?;

let mut safe_account = SafeAccount::from_file(json_keyfile, None);

let secret = safe_account.crypto.secret(password).map_err(|_|
Error::InvalidPassword)?;

safe_account.address = KeyPair::from secret(secret)?.address();

15

https://github.com/paritytech/parity/blob/364bf48ceff0359a3765de1cf4b15925b66dab25/ethstore/src/dir/disk.rs#L205
https://github.com/paritytech/parity/blob/364bf48ceff0359a3765de1cf4b15925b66dab25/ethstore/src/ethstore.rs#L161

self.store.import(vault, safe_ account)

Figure 2: The import_wallet implementation

If two wallets with the same account ID are imported during the same second interval to
the same vault, they will share the same file path. Sharing the same file path results in the
earlier-imported wallet being overwritten by the later-imported wallet.

Exploit Scenario

Bob creates a wallet. Carl imports a wallet some time later with Bob's account ID. The
server storing the wallets encounters a failure that requires all the accounts to be restored.
The automated restoration process imports Bob's wallet and then Carl's wallet to the same
vault within the same second. Bob's wallet key file is subsequently overwritten by Carl's
wallet.

Recommendation

Generate a new UUID for imported accounts.

Verify that there are no conflicting account IDs during import.

Long term, consider creating unit tests that cover a wider range of application functionality.

16

2. Rust-crypto is not recommended for security-critical usage

Severity: High Difficulty: High
Type: Cryptography Finding ID: TOB-Parity-028
Target: ethcrypto

Description

The rust-crypto crate has never received a thorough security assessment and should not be
considered for security-critical usage. Many of the Parity encryption algorithms, encryption
modes, and hashing algorithms are based on the rust-crypto crate.

The rust-crypto crate homepage explicitly mentions that it is not recommended for
applications where security is important.

Rust-Crypto has not been thoroughly audited for correctness, so any use where
security is important is not recommended at this time.

Figure 1: Screenshot from rust-crypto crates homepage

Cryptography libraries are notoriously difficult to implement correctly and can fail in
catastrophic ways due to seemingly minor flaws.

Exploit Scenario
A critical security issue is discovered one of rust-crypto’s cryptographic algorithms which
Parity uses. Alice, a malicious actor, exploits this issue to decrypt sensitive Parity key files.

Recommendation
Short term, minimize the use of the rust-crypto crate and prepare to migrate away from it.

Long term, use a more conservative, better reviewed library for cryptographic operations.
Consider using a Rust wrapper to OpenSSL or the Rust Ring library.

References
e (CVE-2016-7798: Improper GCM initialization vector setup by the OpenSSL Ruby gem
e (CVE-2014-1266: Apple’s SSL/TLS bug
e The many, many ways that cryptographic software can fail

17

https://crates.io/crates/rust-crypto
https://github.com/briansmith/ring
https://github.com/ruby/openssl/issues/49
https://www.imperialviolet.org/2014/02/22/applebug.html
https://medium.freecodecamp.org/why-does-cryptographic-software-fail-often-d660d3cdfdc5

3. HMAC comparison in do_decryptis vulnerable to timing attacks

Severity: Medium Difficulty: Medium
Type: Cryptography Finding ID: TOB-Parity-012
Target: ethstore/src/account/crypto.rs

Description
Crypto: :do_decrypt (crypto.rs#L142) uses a non-constant time string comparison to verify
HMAC hash equality.

let mac = crypto::derive mac(&derived_right bits,
&self.ciphertext).keccak256();

if mac != self.mac {
return Err(Error::InvalidPassword);

}

let mut plain: SmallVec<[u8; 32]> = SmallVec::new();

Figure 1: The do_decrypt implementation

This method of comparison exposes a timing side channel that allows malicious individuals
to determine the correct HMAC hash for arbitrary content.

Exploit Scenario

Bob alters the ciphertext of a vault key file with specially crafted content that modifies
important metadata. He repeatedly makes strategic modifications to each byte in the
HMAC value of the ciphertext in the vault key file while triggering the vault key file
decryption operation. A statistical analysis of the elapsed operation times will reveal a
difference between the correct byte in the HMAC and the wrong byte in the HMAC.
Eventually, Bob crafts a valid HMAC for his payload content.

Recommendation
Use a constant-time string comparison such as subtle: :arrays_equal instead of == or !=
for sensitive string comparisons.

References
e Constant-time Toolkit: Reference library of constant-time implementations
e Why Constant-Time Crypto?
e Compare secret strings in constant time

18

https://github.com/paritytech/parity/blob/364bf48ceff0359a3765de1cf4b15925b66dab25/ethstore/src/account/crypto.rs#L142
https://github.com/pornin/CTTK
https://www.bearssl.org/constanttime.html
https://cryptocoding.net/index.php/Coding_rules#Compare_secret_strings_in_constant_time

4."single message” crypto operations lack authentication due to using
AES-CTR

Severity: Medium Difficulty: Medium
Type: Cryptography Finding ID: TOB-Parity-013
Target: ethcrypto/src/lib.rs

Description

In the ECIES module, encrypt_single message and decrypt_single message use
AES-CTR. CTR mode is malleable, so under some circumstances attackers could modify
encrypted messages without access to the keys. This could allow attackers to effectively
impersonate some party communicating using these facilities.

decrypt_single_message is used by the SecretStore server. We did not further investigate
the SecretStore server because it is not in-scope for the review. However, a cursory review
identified that decrypt_single_message decrypts ciphertext received over the network.

Exploit Scenario

Alice, a malicious user, uses Wireshark to capture network traffic meant for SecretStore.
She extracts a message and strategically tampers with it to alter certain critical fields. Alice
sends the crafted message to the SecretStore to gain access to unauthorized functionality.

Recommendation
Use AES-GCM, an authenticated encryption mode. Using an AEAD construction like
AES-GCM will provide a guarantee of integrity, rather than just confidentiality.

Refer to Thomas Ptacek’s Cryptographic Right Answers whenever needed for new code.

References
e Counter Mode Security: Analysis and Recommendations (see Section 2.1)
e Evaluation of Some Blockcipher Modes of Operation

19

https://gist.github.com/tqbf/be58d2d39690c3b366ad
https://pdfs.semanticscholar.org/2c94/f83c8b30bf2da92bf711a73e30c843969199.pdf
http://web.cs.ucdavis.edu/~rogaway/papers/modes.pdf

5. Deserialized address field in SafeAccount is not properly sanitized

Severity: Medium Difficulty: High
Type: Data Validation Finding ID: TOB-Parity-021
Target: ethstore/src/dir/disk.rs

Description

The address field in SafeAccount is improperly sanitized after being deserialized from a
KeyFile in the root vault. This may allow malicious actors to trick unsuspecting users into
fraudulent transactions.

Wallets are stored by default as KeyFile (key file.rs#L45) structures serialized into JSON in
the root vault.

#[derive(Debug, PartialEq, Serialize)]
pub struct KeyFile {

pub id: Uuid,

pub version: Version,

pub crypto: Crypto,

pub address: H160,

pub name: Option,

pub meta: Option,

Figure 1: The KeyFile structure implementation

EthMultiStore: :reload_accounts (ethstore.rs#L296) is responsible for loading KeyFile
objects and adding them, by address, to the accounts reference cache.

fn reload_accounts(&self) -> Result<(), Error> {
let mut cache = self.cache.write();

let mut new_accounts = BTreeMap::new();
for account in self.dir.load()? {
let account_ref = StoreAccountRef::root(account.address);
new_accounts
.entry(account_ref)
.or_insert_with(Vec: :new)
.push(account);
}
for (vault_name, vault) in &*self.vaults.lock() {
for account in vault.load()? {
let account_ref =
StoreAccountRef: :vault(vault_name, account.address);

20

https://github.com/paritytech/parity/blob/364bf48ceff0359a3765de1cf4b15925b66dab25/ethstore/src/json/key_file.rs#L45
https://github.com/paritytech/parity/blob/364bf48ceff0359a3765de1cf4b15925b66dab25/ethstore/src/ethstore.rs#L296

new_accounts
.entry(account_ref)
.or_insert_with(Vec: :new)
.push(account);

}

mem: :replace(&mut *cache, new_accounts);

0k(())

Figure 2: The reload_accounts implementation

During the process of loading KeyFile, the address field is never sanitized (disk.rs#L272).

fn read<T>(&self, filename: Option<String>, reader: T) ->
Result<SafeAccount, Error> where T: io::Read {
let key file = json::KeyFile::load(reader).map_err(|e|
Error::Custom(format! ("{:?}", e)))?;
Ok(SafeAccount::from file(key file, filename))

}

Figure 3: The read implementation

It is possible for a malicious actor with filesystem access to modify the actor’s address such
that the displayed address differs from the actual address as derived from the KeyFile's
secret.

Exploit Scenario

David is planning to send Carl some ether. Bob modifies Carl's serialized JSON KeyFile on
the filesystem so that Carl's address is changed to one that Bob controls. Bob forces the
Parity server to restart. David does not notice Carl's changed address in the Parity Ul and
sends the ether to an address he believes Carl controls. The transaction goes through. Carl
gets notified that he received the funds. However, the funds are actually sent to Bob.

Recommendation

Do not trust the value of address when loading KeyFiles from the root vault. Consider
making the root vault password-protected by default and warning the user about the
consequences of an unprotected root vault.

21

https://github.com/paritytech/parity/blob/364bf48ceff0359a3765de1cf4b15925b66dab25/ethstore/src/dir/disk.rs#L272

6. Content-Security-Policy is overly permissive

Severity: Low Difficulty: High
Type: Configuration Finding ID: TOB-Parity-001
Target: dapps/src/handlers/mod.rs

Description

The Content Security Policy for the Parity Ul (accessible at http://127.0.0.1:8180) is overly
permissive. In the presence of an XSS vulnerability, the applied Content Security Policy may
be insufficient to block injected malicious Javascript code.

The script-src directive specifies valid Javascript sources. script-srcis setto 'self’
'unsafe-inline' 'unsafe-eval' which allows for the use of inline resources, the eval
JavaScript function, and script content from the origin of the served document.

The object-src directive specifies valid sources for object, embed, and applet elements.
object-srcis unset. It will default to the value specified by default-src. In this case, that
value is self and indicates that object, embed, and applet elements served from the origin
of the served document are valid sources.

Evaluated CSP as seen by a browser supporting CSP Version 3 expandicollapse al

v connect-src

v frame-src

~ child-sre

+ Iimg-sre

v style-src

+ font-src

© script-src

‘self! 'self" can be problematic if you host JSONP, Angular ar
user uploaded files.
O 'unsafe-inling' ‘unsafe-inline' allows the execution of unsafe in-page
scripts and event handlers.
'‘unsafe-eval 'unsafe-eval allows the execution of code injected into

DOM AFls such as eval().

v worker-src

v default-src

+ sandbox

+ form-action

+ block-all-mixed-content

v frame-ancestors

@ object-sre [missing] Can you restrict object-src to 'none'?

Figure 1: Easily evaluate potential CSP configurations with Google’s CSP Evaluator

22

http://127.0.0.1:8180/
https://csp-evaluator.withgoogle.com/

Exploit Scenario

In conjunction with an XSS vulnerability, an attacker may leverage the overly permissive
Content Security Policy to easily evaluate or inject arbitrary Javascript code into the Parity
Ul. The attacker may be able to steal account passwords and perform other malicious
actions via hooking RPC handling functions with malicious code running in the Parity Ul.

Recommendation
Explicitly whitelist valid sources in the Content Security Policy.

e Consider setting object-src to ‘none’ if no embedded content or browser
extensions are loaded via <object> or <embed> tags.
Consider using nonces on inline Javascript to whitelist these code blocks with CSP.

Consider whitelisting specific domains and URLs for worker-src and style-src.

References

Google Reference on Content Security Policy
Google Content Security Policy Evaluator
MDN: Content-Security-Policy script-src
MDN: Content-Security-Policy object-src

23

https://csp.withgoogle.com/docs/index.html
https://csp-evaluator.withgoogle.com/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/script-src
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/object-src

7. Confidential information resides in memory for too long

Severity: Low Difficulty: Undetermined
Type: Cryptography Finding ID: TOB-Parity-022
Target: ethstore/src/ethstore.rs

Description

Confidential information such as keys and passwords are not zeroed immediately after
use. For instance, the secret variable below contains the unencrypted key for the account
to be imported (ethstore.rs#L164).

fn import_wallet(&self, vault: SecretVaultRef, json: &[u8], password:
&str) -> Result {

let json_keyfile = json::KeyFile::load(json).map_err(|_|
Error::InvalidKeyFile("Invalid JSON format".to_owned()))?;

let mut safe_account = SafeAccount::from_file(json_keyfile,
None);

let secret = safe_account.crypto.secret(password).map_err(]|_|
Error::InvalidPassword)?;

safe_account.address = KeyPair::from_secret(secret)?.address();

self.store.import(vault, safe_account)

Figure 1: The import_wallet implementation

After import_wallet completes, secret becomes out of scope and is deallocated. Despite
the deallocation, the confidential contents of the key still reside at the memory location
once occupied by secret.

Exploit Scenario

Bob’s computer is compromised by Alice. Alice scrapes memory to instantly retrieve the key
to Bob’s wallet. She does not need to wait for Bob to use or expose the key because it is
already in memory. Bob has no time to detect that his computer is compromised before
Alice succeeds in stealing his wallet.

Bob runs Parity and experiences a crash. Bob generates a memory dump and posts it to
internet forum in search of a resolution. Unknown to Bob, the memory dump contains his
secret key. Alice carves the secret key from the memory dump and steals Bob’s wallet.

Recommendation

Implement the Drop trait for objects holding confidential content. The drop function should
overwrite the confidential content with zeroes.

24

https://github.com/paritytech/parity/blob/364bf48ceff0359a3765de1cf4b15925b66dab25/ethstore/src/ethstore.rs#L164

References
e Should | delete cryptographic data from memory?

25

https://crypto.stackexchange.com/questions/9998/should-i-delete-cryptographic-data-from-memory

8. Parity executables on Windows lack code signatures

Severity: Low

Type: Cryptography
Target: Parity Windows installation

Description

Difficulty: Low

Finding ID: TOB-Parity-027

Several Parity executables on Windows (ethkey.exe, ethstore.exe, parity-evm.exe, and
uninstall.exe) are not digitally signed.

C:\Program Files\Parity
Verified:
Link date:
-- snipped --
C:\Program Files\Parity
Verified:
Link date:
-- snipped --
C:\Program Files\Parity
Verified:
Link date:
-- snipped --
C:\Program Files\Parity
Verified:
Signing date:
Publisher:
-- snipped --
C:\Program Files\Parity
Verified:
Signing date:
Publisher:
-- snipped --
C:\Program Files\Parity
Verified:
Link date:
-- snipped --

Technologies\Parity\ethkey.exe:
Unsigned
10:35 AM 2/19/2018

Technologies\Parity\ethstore.exe:
Unsigned
10:35 AM 2/19/2018

Technologies\Parity\parity-evm.exe:
Unsigned
10:35 AM 2/19/2018

Technologies\Parity\parity.exe:
Signed

10:36 AM 2/19/2018

ETH CORE LIMITED

Technologies\Parity\ptray.exe:
Signed

10:36 AM 2/19/2018

ETH CORE LIMITED

Technologies\Parity\uninstall.exe:
Unsigned
7:55 PM 7/24/2016

Figure 1: sigcheck.exe output on the contents of Parity’s installation folder on Windows

Exploit Scenario

Bob downloads the Parity wallet software from the internet and wants to verify that the
copy received is legitimate. He cannot verify their integrity by reviewing code signatures.

26

https://docs.microsoft.com/en-us/sysinternals/downloads/sigcheck

The enterprise security team at Widgets Inc. regularly reviews the installed and running
software on corporate workstations. They cannot easily validate that Parity software is not
backdoored or illegitimate since it lacks code signatures.

Recommendation

Ensure that all executables included in the Parity installation are digitally signed.
Follow current industry standards by signing the Windows executables with SHA1 and
SHAZ2.

Create a pre-release checklist for all new releases of the Parity wallet. On the checklist,
ensure that all executables on every operating system are code signed prior to release.

27

Solidity Findings Summary

| Title Type Severity

1 | Re-entrancy may lead to stolen ethers Data Validation High

2 Missing loop iteration leads to Data Validation Medium
non-removable validator

3 Incorrect interface implementation leads | Undefined Medium
to unexpected behavior Behavior

4 Incorrect conditional prevents fork Data Validation Medium
rejection

5 Uninitialized value leads to an Data Validation Medium
unmodifiable owners list

6 | Race condition may preempt an Timing Medium
Ethereum address to email association

7 Incorrect interfaces may lead to Undefined Medium
unexpected behavior Behavior

8 Incorrect authorization prevents the Access Controls Medium
calling of reporting functions

9 | “Unrequired” clients can remove a Data Validation Medium
“required” client's privilege

10 | Missing contract existence check may Data Validation Medium
cause unexpected behavior

11 | Race condition may lead to content Timing Medium
compromise

12 | Fork re-proposition may prevent owners Data Validation Low
from accepting or rejecting a fork

13 | Owners cannot accept or reject Data Validation Low
re-proposed transactions

14 | Lack of argument validation may lead to Data Validation Low
incorrect deletion of badge information

15 | Deleting clients may lead to incorrect Data Validation Low

getter values

28

16 | Deleting entries may lead to incorrect Data Validation Low
getter value (SimpleRegistry)
17 | Deleting dapps may lead to incorrect Data Validation Low
getter value (DappReg)
18 | Deleting badges may lead to incorrect Data Validation Low
getter value (BadgeReg)
19 | Empty keyServerlp may lead to incorrect Data Validation Informational
keyServersList
20 | Contracts specify outdated compiler Patching Informational

version

29

Solidity Findings

1. Re-entrancy may lead to stolen ethers

Severity: High Difficulty: High
Type: Data Validation Finding ID: TOB-Parity-024
Target: Operations.sol

Description
The Operations contract allows authorized users to send ethers. A re-entrancy
vulnerability may allow a malicious user to send more ethers than expected.

Once a transaction is confirmed, the checkProxy function is invoked
(Operations.sol#1.278-L.284):

function checkProxy(bytes32 _txid) internal
when_proxy_confirmed(_txid) returns (uint txSuccess) {
var tx = proxy[_txid];
var success = tx.to.call.value(tx.value).gas(tx.gas)(tx.data);
TransactionRelayed(_txid, success);
txSuccess = success ? 2 : 1;
delete proxy[_txid];

Figure 1: The checkProxy implementation

The transaction is executed before it is deleted from the proxy list. A malicious transaction
destination may be able to confirm the transaction a second time prior to the transaction’s
deletion. As a result, the ethers will be sent multiple times.

To exploit this vulnerability, the attacker needs to have access to an authorized client that is
not needed to confirm the transaction. It is expected that all the authorized clients are
needed to confirm a transaction. However, this assumption can be broken, for example, by
incorrectly initializing a contract.

Exploit Scenario

The number of authorized clients to confirm a transaction is set to two, but three
authorized clients are added during initialization. Bob's smart contract is one of the
authorized clients. There is a pending transaction with one ether to Bob’s smart contract.
The transaction is executed and Bob’s smart contract fallback function is triggered. The

30

https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/Operations.sol#L278-L284

fallback function confirms the transaction a second time. As a result, the transaction is
executed twice and two ethers are sent instead of one.

Recommendation
Delete the transaction from proxy prior to execution.

Avoid state changes after an external call. Apply the check-effects-interactions pattern.

31

http://solidity.readthedocs.io/en/develop/security-considerations.html?#use-the-checks-effects-interactions-pattern

2. Missing loop iteration leads to non-removable validator

Severity: Medium Difficulty: Low
Type: Data Validation Finding ID: TOB-Parity-002
Target: InnerOwnedSet.sol

Description
An improper loop iteration in the constructor functions prevents the removal of a
consensus validator from the OwnedSet and InnerOwnedSet contracts.

The ownedSet and InnerOwnedSet contracts are validator sets used in consensus. Both of
their constructors take one argument: a list of initial validator addresses called _initial.
This list of addresses is used in three fields:

1. pending (copy of _initial)
2. validators (copyof_initial)
3. pendingStatus

In the constructors, the for loop used to initialize a pendingStatus AddressStatus object
has an erroneous end condition. A correct iteration would result in the for loop
terminating after handling the address atindex _initial.length-1. However, the end
condition is when the iteration index is greater than or equal to _initial.length-1, thus
terminating the loop after handling the address at index _inital.length-2. This causes
the end condition to be off by one, thus skipping initialization of the last item in _initial.

function OwnedSet(address[] _initial) public {
pending = _initial;
for (uint i = 0; i < _initial.length - 1; i++) {
pendingStatus[_initial[i]].isIn = true;
pendingStatus[_initial[i]].index = 1i;
}

validators = pending;

Figure 1: The OwnedSet constructor function
There are two side effects to this state:

1. The function reportBenign() cannot be called on the last address
2. The last address cannot be removed as a validator via removevalidator()

Below is an example state of an OwnedSet after creation:

32

+ validators: address|)
length: 3
0: 0x0000000000000000000000000000000000000001 address
1: 0x0000000000000000000000000000000000000002 address
2: 0x0000000000000000000000000000000000000003 address
« pending: address[]
length: 3
0: 0x0000000000000000000000000000000000000001 address
1: 0x0000000000000000000000000000000000000002 address
2. 0x0000000000000000000000000000000000000003 address
+ pendingStatus: mapping(address == struct Owned3Set. AddressStatus)
= Q001:;
struct OwnedSet. AddressStatus
isln: true bool
index: O wint256
= D002:;

Figure 2: State of an OwnedSet after creation with three addresses

Exploit Scenario

Alice creates an OwnedSet contract with Bob and Eve as consensus validators. Alice no
longer trusts Eve and attempts to remove Eve as a validator via removeValidator (). This
call will fail and Eve will remain in the trusted validators array.

Recommendation
Remove the subtract-by-one in the end condition of the for loop to resolve the coding flaw.

Consider improving unit test coverage. This vulnerability could have been discovered
through unit tests that cover OwnedSet and InnerOwnedSet contract operations.

Review each contract creation transaction for OwnedSet and InnerOwnedSet to determine
the last element of the array passed to the constructor.

References
https://paritytech.github.io/wiki/Validator-Set

33

https://paritytech.github.io/wiki/Validator-Set

3. Incorrect interface implementation leads to unexpected behavior

Severity: Medium Difficulty: Low
Type: Undefined Behavior Finding ID: TOB-Parity-003
Target: SimpleCertifier.sol and SMSVerification.sol

Description
SimpleCertifier and ProofOfSMS inherit from Certifier but do not implement the

getData function. As a result, any use of this function leads to an incorrect result.

Certifier implements the function getData (Certifier.sol#L11):

function getData(address who, string field) constant public returns
(bytes32) {}

Figure 1: The Certifier.getData implementation
In the Certifier implementation, getData always returns 0.
SimpleCertifier and ProofOfSMS inherit from Certifier, but this function is not
overridden. As a result, any calls to it will return 0. This may lead to unexpected behavior in

third-party applications or contracts.

An example of misuse is present in MasterCertifier.sol#L37-L42

function getData(address _who, string field) public constant returns
(bytes32) {
for (uint i = 0; i < certifiers.length; ++i) {
if (certifiers[i].certified(_who)) {
return certifiers[i].getData(_who, field);

Figure 2: The MasterCertifier.getData implementation

On a related note, the function get(address _who, string field)
(SimpleCertifier.sol#L28, SMSVerification.sol#L31) has the expected behavior of getData.
We believe this function was incorrectly named, and should actually be named getData.

Exploit Scenario

Bob creates a smart contract that uses ProofOfSMS. His smart contract performs some
checks on the certifier's data by calling getData. Since getData always returns 0, Bob’s
smart contract does not work.

34

https://github.com/paritytech/contracts/blob/619b1b52318e8ad58431b568883382fddc33995c/Certifier.sol#L11
https://github.com/paritytech/contracts/blob/619b1b52318e8ad58431b568883382fddc33995c/MasterCertifier.sol#L37-L42
https://github.com/paritytech/contracts/blob/619b1b52318e8ad58431b568883382fddc33995c/SimpleCertifier.sol#L28
https://github.com/paritytech/contracts/blob/619b1b52318e8ad58431b568883382fddc33995c/SMSVerification.sol#L31

Recommendation
Rename get to getData in SimpleCertifier.sol#L28 and SMSVerification.sol#L31.

Define Certifier (Certifier.sol#L7-L14) as an interface instead of an abstract contract.
getData (Certifier.sol#L11), getAddress (Certifier.sol#L12), and getuUint (Certifier.sol#L13)
should not be implemented in Certifier. This would have prevented the introduction of
the issue.

Consider carefully reviewing the interface of a contract. If a contract is meant to be only
composed of headers, use interface instead of abstract contract.

Note: We found OprahBadge.sol was also vulnerable to this issue (out of scope).

35

https://github.com/paritytech/contracts/blob/619b1b52318e8ad58431b568883382fddc33995c/SimpleCertifier.sol#L28
https://github.com/paritytech/contracts/blob/619b1b52318e8ad58431b568883382fddc33995c/SMSVerification.sol#L31
https://github.com/paritytech/contracts/blob/619b1b52318e8ad58431b568883382fddc33995c/Certifier.sol#L7-L14
http://solidity.readthedocs.io/en/develop/contracts.html#interfaces
https://github.com/paritytech/contracts/blob/619b1b52318e8ad58431b568883382fddc33995c/Certifier.sol#L11
https://github.com/paritytech/contracts/blob/619b1b52318e8ad58431b568883382fddc33995c/Certifier.sol#L12
https://github.com/paritytech/contracts/blob/619b1b52318e8ad58431b568883382fddc33995c/Certifier.sol#L13
http://solidity.readthedocs.io/en/develop/contracts.html#interfaces
http://solidity.readthedocs.io/en/develop/contracts.html#abstract-contracts
https://github.com/paritytech/contracts/blob/619b1b52318e8ad58431b568883382fddc33995c/OprahBadge.sol

4. Incorrect conditional prevents fork rejection

Severity: Medium Difficulty: Low
Type: Data Validation Finding ID: TOB-Parity-006
Target: Operations.sol

Description

An incorrect conditional in the only_unratified modifier prevents forks from being
rejected. In the Operations contract, only a single fork can be proposed at a time. An
existing fork proposal needs to be accepted prior to creating new fork proposals.

rejectFork is called to reject a fork (Operations.sol#162-167):

function rejectFork() only when_proposed only undecided_client_owner
only unratified {
var newClient = clientOwner[msg.sender];
fork[proposedFork].status[newClient] = Status.Rejected;
ForkRejectedBy(newClient, proposedFork);
noteRejected(newClient);

Figure 1: The rejectFork implementation

rejectFork has the only unratified modifier (Operations.sol#L291-1L292):

modifier only ratified{ if (!fork[proposedFork].ratified) throw; ; }
modifier only unratified { if (!fork[proposedFork].ratified) throw; _; }

Figure 2: The only_ratified and only_unratified modifiers

only unratified and only_ratified contain the same code. They both ensure that the
fork has been ratified. Since a fork is only ratified when accepted, it is not possible to reject
a fork.

Once a fork is under proposal, no other forks can be proposed. The current fork has to be
accepted in order to propose new forks.

Exploit Scenario
Bob proposes a fork. He realizes the fork proposal was a mistake and wants to reject the
fork. He attempts to reject the fork but the rejection invocation fails. Bob has to accept the

erroneous proposed fork in order to propose the amended fork.

Recommendation

36

https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/Operations.sol#L162-L167
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/Operations.sol#L291-L292

Fix the only unratified modifier.

Create unit tests. A test on the rejection API could have found this vulnerability.

37

https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/Operations.sol#L162

5. Uninitialized value leads to an unmodifiable owners list
Severity: Medium Difficulty: Low

Type: Data Validation Finding ID: TOB-Parity-007

Target: InnerOwnedSet.sol and RelaySet.sol
Description
An uninitialized OuterSet in InnerSet renders the owners list in InnerOwnedSet

immutable.

InnerOwnedSet inherits from InnerSet (InnerOwnedSet.sol#L22):

contract InnerOwnedSet is Owned, InnerSet {

Figure 1: The InnerOwnedSet contract

InnerSet has an outerSet variable:

contract InnerSet {
OuterSet public outerSet;

Figure 2: The InnerSet contract

Since outerSet is never initialized in InnerSet and InnerOwnedSet, outerSet has an
immutable value of 0.

outerSet is used in the only_outer modifier (RelaySet.sol#[82-L85):

modifier only outer() {
require(msg.sender == address(outerSet));

J

Figure 3: The only_router modifier

... which is used by the finalizeChange function (InnerOwnedSet.sol#L84):

function finalizeChange() public only outer {

Figure 4: The finalizeChange function

With an uninitialized outerSet, only_outer will always cause the finalizeChange function

to fail.

38

https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/validator_contracts/InnerOwnedSet.sol#L22
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/validator_contracts/interfaces/RelaySet.sol#L79-L80
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/validator_contracts/interfaces/RelaySet.sol#L79-L80
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/validator_contracts/interfaces/RelaySet.sol#L82-L85
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/validator_contracts/InnerOwnedSet.sol#L84

Similarly, initiateChange attempts to call a method of outerSet
(InnerOwnedSet.sol#L79-L80).

function initiateChange() private {
outerSet.initiateChange(block.blockhash(block.number - 1),
getPending());

Figure 5; The initiateChange function

0 is a valid address that does not contain code. A high-level call to an address without code
fails:

Function calls cause exceptions if the called contract does not exist (in the sense
that the account does not contain code) or if the called contract itself throws an
exception or goes out of gas.

As a result, the call to outerSet fails. Since addvalidator and removeValidator both call
initiateChange, this failure makes adding and removing validators impossible.

Exploit Scenario
Alice, Bob and Eve are the three initial validators of InnerOwnedSet. Alice and Bob realize
that Eve is malicious and want to remove her from the validators list, but are not able to do

SO.

Recommendation
Initialize outersSet

Ensure that all variables are correctly initialized.

Create unit tests for this functionality. A test on the owners modification functionality may
have found this vulnerability.

39

https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/validator_contracts/InnerOwnedSet.sol#L79-L80
https://etherscan.io/address/0x00#code
http://solidity.readthedocs.io/en/develop/control-structures.html?highlight=existence#external-function-calls
http://solidity.readthedocs.io/en/develop/control-structures.html?highlight=existence#external-function-calls

6. Race condition may preempt an Ethereum address to email association

Severity: Medium Difficulty: High
Type: Timing Finding ID: TOB-Parity-015
Target: ProofOfEmail.sol

Description
A race condition in ProofOfEmail may allow an attacker to preempt an
Ethereum-address-to-email association.

ProofOfEmail associates a user Ethereum address with an email.

When the user requests email verification, the server associates the SHA3 hash of code to
an email hash in the puzzles mapping (ProofOfEmail.sol#L62-L65):

function puzzle(address _who, bytes32 puzzle, bytes32 _emailHash)
only owner {

puzzles|[puzzle]| = _emailHash;

Puzzled(_who, _emailHash, puzzle);

Figure 1: The puzzle implementation

After the user receives code, they can associate the email to an ethereum address by
calling confirm (ProofOfEmail.sol#L66-L77):

function confirm(bytes32 code) returns (bool) {
var emailHash = puzzles[sha3(_code)];
if (emailHash == 9)

return;

delete puzzles[sha3(_code)];

if (entries[emailHash] != @ || reverseHash[msg.sender] != 0)
return;

entries[emailHash] = msg.sender;
reverseHash[msg.sender]| = emailHash;
Confirmed(msg.sender);

return true;

Figure 2: The confirm implementation
Ethereum transactions are not accepted instantaneously. An attacker can observe the sent

code before network consensus. Prior to the confirmation of the first transaction, they can
submit the same code and associate the email with their own address. The attacker's

40

https://github.com/paritytech/sms-verification/tree/df1d817fcdea4f8babcd65a44825f0457bc5eb2a#parity-sms-verification
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/ProofOfEmail.sol#L62-L65
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/ProofOfEmail.sol#L66-L77

probability for success depends on the network state and the gas price for each
transaction. An attacker can improve the odds of their transaction confirming first by
offering a higher gas price.

As a result, the attacker can associate the victim’'s email address with the attacker’'s own
ethereum address.

Another possible attack is an ethereum-address-to-email association denial-of-service. If
the attacker’s ethereum address is already associated, the code is deleted from the
puzzles mapping (ProofOfEmail.sol#L70-L72) and future associations with this code will
not be possible.

delete puzzles[sha3(_code)];
if (entries[emailHash] != @ || reverseHash[msg.sender] != 0)
return;

Figure 3: The confirm implementation (L70-L72)

Exploit Scenario

Bob wants to associate his email with his ethereum address. He requests the association
and receives the validation code by email. He calls confirm with the validation code. Alice
observes the transaction before the mining process completes. She calls confirm with the
same validation code. Alice’s transaction is mined before Bob’s transaction. As a result,
Alice's ethereum address is now associated with Bob’s email.

Recommendation
Use the sender address from the request for the confirmation process.

Ensure that network latency from Ethereum transactions does not trigger unexpected
behaviors.

References
e https://ethgasstation.info/

41

https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/ProofOfEmail.sol#L70-L72
https://ethgasstation.info/

7. Incorrect interfaces may lead to unexpected behavior

Severity: Medium Difficulty: Low
Type: Undefined Behavior Finding ID: TOB-Parity-016
Target: ProofOfEmail.sol

Description
ProofOfEmail implements the wrong interface, impacting some of its functions.

ProofOfEmail inherits from the Certifier and ReverseRegistry contracts
(ProofOfEmail.sol#L42) :

contract ProofOfEmail is Owned, Certifier, ReverseRegistry {

Figure 1: The ProofOfEmail contract implementation

The Certifier and ReverseRegistry contracts are meant to be copies of Certifier.sol
and Registry.sol (ProofOfEmail.sol#L21-L40):

// From Registry.sol

contract ReverseRegistry {
event ReverseConfirmed(string indexed name, address indexed reverse);
event ReverseRemoved(string indexed name, address indexed reverse);

function hasReverse(bytes32 _name) constant returns (bool);
function getReverse(bytes32 _name) constant returns (address);
function canReverse(address _data) constant returns (bool) {}
function reverse(address _data) constant returns (string) {}

}

// From Certifier.sol

contract Certifier {
event Confirmed(address indexed reverse);
event Revoked(address indexed reverse);

function certified(address _who) constant returns (bool);
function lookup(address _who, string _field) constant returns (string) {}
function lookupHash(address _who, string field) constant returns
(bytes32);
}

Figure 2: The ReverseRegistry and Certifier contract implementations

The code does not match the implementations present in Registry.sol
(Registry.sol#L37-L45) and Certifier.sol (Certifier.sol#L19-L26):

42

https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/ProofOfEmail.sol#L42
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/ProofOfEmail.sol#L21-L40
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/Registry.sol#L37-L45
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/Certifier.sol#L19-L26

contract ReversibleRegistry {

event ReverseConfirmed(string indexed name, address indexed
reverse);

event ReverseRemoved(string indexed name, address indexed
reverse);

function hasReverse(bytes32 _name) constant returns (bool);
function getReverse(bytes32 _name) constant returns (address);
function canReverse(address _data) constant returns (bool);
function reverse(address _data) constant returns (string);

Figure 3: The ReversibleRegistry contract implementation

contract Certifier {

event Confirmed(address indexed who);

event Revoked(address indexed who);

function certified(address who) constant public returns
(bool);

function getData(address _who, string _field) constant public
returns (bytes32) {}

function getAddress(address who, string field) constant
public returns (address) {}

function getUint(address _who, string _field) constant public
returns (uint) {}

}

Figure 4: The Certifier contract implementation

We suspect that the ReversibleRegistry contract in Registry.sol is incorrectly named
and should actually be named ReverseRegistry.

The ReverseRegistry in ProofofEmail.sol implements canReverse and reverse as
empty functions while they are interfaces in Registry’s ReversibleRegistry contract.
These functions are not overridden in the ProofOfEmail contract. As the result, the
functions always return false.

The Certifier contractin ProofOfEmail.sol defines an empty lookup function. The
ProofOfEmail contract implements the Certifier contract but does not override the
lookup function. The lookup function is also absent from Certifier.sol's copy of the
Certifier contract. Furthermore, the lookupHash function is presentin
ProofOfEmail.sol's copy of Certifier but notin Certifier.sol's copy.

43

The Certifier contractin Certifier.sol defines getData, getAddress, and getUint.
These functions do not exist in ProofOfEmail.sol's copy of the Certifier contract.
However, the ProofOfEmail contract in ProofOfEmail.sol defines a getAddress function.

These inconsistencies may lead to unexpected behavior for users and third-party
programs.

Exploit Scenario

Bob creates a smart contract that uses ProofOfEmail. His smart contract performs some
checks on data returned by lookup. Since lookup always returns 0, Bob’s smart contract
does not work.

Recommendation

Remove ReverseRegistry and Certifier from ProofOfEmail.sol. Import the contracts
from Registry.sol and Certifier.sol instead. Clarify which functions should be present
in each contract.

Use import instead of copying and pasting code.

Carefully review the interface of a contract.

44

8. Incorrect authorization prevents the calling of reporting functions

Severity: Medium Difficulty: Low
Type: Access Controls Finding ID: TOB-Parity-017
Target: RelaySet.sol

Description
An incorrect authorization schema prevents outersSet from calling the reportBenign and
reportMalicious functions.

reportBenign and reportMalicious of outerSet call reportBenign and reportMalicious
of innerSet, respectively (RelaySet.sol#L71-L76):

function reportBenign(address validator, uint256 blockNumber) public {
innerSet.reportBenign(validator, blockNumber);

}

function reportMalicious(address validator, uint256 blockNumber, bytes
proof) public {
innerSet.reportMalicious(validator, blockNumber, proof);

}

Figure 1: The reportBenign and reportMalicious implementations

These functions are public in outerSet.

reportBenign and reportMalicious in InnerOwnedSet are protected by the only_owner
modifier (InnerOwnedSet.sol#L116-L124):

// Called when a validator should be removed.

function reportMalicious(address _validator, uint _blockNumber, bytes

_proof) public only owner is recent(_blockNumber) {
Report(msg.sender, _validator, true);

}

// Report that a validator has misbehaved in a benign way.

function reportBenign(address _validator, uint _blockNumber) public

only owner is_validator(_validator) is_recent(_blockNumber) {
Report(msg.sender, _validator, false);

}

Figure 2: The reportBenign and reportMalicious implementations

45

https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/validator_contracts/interfaces/RelaySet.sol#L71-L76
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/validator_contracts/InnerOwnedSet.sol#L116-L124

outerSet is not meant to be the owner of innerSet. The call to innerSet.reportBenign
and innerSet.reportMalicious will always fail. These failures cause
outerSet.reportBenign and outerSet.reportMalicious to fail as well.

As a result, no one is able to call the reporting functions of outerSet.

Exploit Scenario
Bob wants to report Alice as a malicious user. Bob calls outerSet.reportBenign, but the call
fails. As a result, Bob is not able to report Alice’s malicious activity.

Recommendation

Fix the authorization schema of the reportBenign and reportMalicious functions of
InnerOwnedSet. Consider changing the modifier only_owner to only_outer in
InnerOwnedSet.reportBenign and InnerOwnedSet.reportMalicious.

Carefully review the authorization schema of the contracts. Create unit tests to ensure that
each function can be called as expected.

46

9. “Unrequired” clients can remove a “required” client’s privilege

Severity: Medium Difficulty: Low
Type: Data Validation Finding ID: TOB-Parity-018
Target: Operations.sol

Description

Some clients of Operations have additional privileges and are considered “required.” A lack
of validation in setClientOwner may allow an “unrequired” client to remove the privilege of
a “required” client.

Only clients with required set to True can propose, confirm, or reject a transaction
(Operations.sol#L56-L58):

struct Client {
address owner;
bool required;

Figure 1: The Client Structure

Clients are represented by an address and a name. They can transfer their names to
another address using setClientOwner, even if the address is already associated with a
name (Operations.sol#L169-L175):

function setClientOwner(address _newOwner) only client_owner {
var newClient = clientOwner[msg.sender];
clientOwner[msg.sender]| = 0;
clientOwner[_newOwner] = newClient;
client[newClient].owner = _newOwner;
ClientOwnerChanged(newClient, msg.sender, _newOwner);

Figure 2: The setClientOwner implementation

The client’s privilege is validated using its name (Operations.sol#L290) :

modifier only required_client_owner { var newClient =
clientOwner[msg.sender]; if (!client[newClient].required) throw; ; }

Figure 3: The only_required_client owner implementation

An “unrequired” client can transfer its name to a “required” client. As a result, the
“required” client will lose its privilege.

47

https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/Operations.sol#L56-L58
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/Operations.sol#L169-L175
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/Operations.sol#L290

Exploit Scenario
Bob is a “required” client. Alice, an “unrequired” client, transfers her name to Bob by calling
setClientOwner with Bob’s address. As a result, Bob loses his privilege.

Recommendation
Prevent a client from transferring their name to a client address already associated with a

name.

Create a unit test for this functionality. A test on the name-transfer functionality may have
found this vulnerability.

48

10. Missing contract existence check may cause unexpected behavior

Severity: Medium Difficulty: Medium
Type: Data Validation Finding ID: TOB-Parity-023
Target: RelaySet.sol

Description

OuterSet determines the current set of validators by calling its innerSet's getValidators
function. The lack of a contract existence check allows calls to an invalid address to return
successfully instead of throwing an error. This behavior causes the getValidators function
to erroneously return an empty list of validators.

OuterSet.getValidators uses inline assembly code to call the innerSet.getValidators
function (RelaySet.sol#L59-L69):

function getValidators() public constant returns (address[]) {
address addr = innerSet;
bytes4 sig = SIGNATURE;
assembly {
mstore(0, sig)
let ret := call(exfffffffface8, addr, 0, 0, 4, 0, 0)
jumpi(0x02,iszero(ret))
returndatacopy (@, 0, returndatasize)
return(9, returndatasize)

Figure 1: The getValidators implementation

The Solidity documentation warns:

The low-level call, delegatecall, and callcode will return success if the calling account is
non-existent, as part of the design of EVM. Existence must be checked prior to calling if
desired.

By default, innerSet is 0, which is a valid address that does not contain code. As a result,
getValidators will return an empty list if innerSet is uninitialized or set incorrectly.

Exploit Scenario

Bob deploys two OuterSet contracts. Bob forgets to initialize the innerSet for one of the
OuterSet contracts. Alice is a validator in the forgotten OuterSet. She deploys a smart
contract that concatenates the list of validators from the two OuterSet contracts and uses it

49

https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/validator_contracts/interfaces/RelaySet.sol#L59-L69
http://solidity.readthedocs.io/en/develop/control-structures.html#error-handling-assert-require-revert-and-exceptions
https://etherscan.io/address/0x00#code

for authorization. The getValidator function for the forgotten OuterSet contract returns
an empty list. Alice wants to interact with her smart contract but is denied authorization.

Recommendation
Do not use inline assembly code. We did not find a valid reason for not using a high-level
call, such as:

return innerSet.getValidators();

Fixing this issue may also fix issue Github Issue #99 .

Assembly code should only be used when absolutely needed. Using assembly code
bypasses many of the additional checks provided by higher level Solidity primitives. If
assembly code must be used, carefully review the Solidity documentation and the Yellow

Paper.

50

https://github.com/paritytech/contracts/issues/99
http://solidity.readthedocs.io/en/develop/index.html
https://github.com/ethereum/yellowpaper
https://github.com/ethereum/yellowpaper

11. Race condition may lead to content compromise

Severity: Medium Difficulty: High
Type: Timing Finding ID: TOB-Parity-008
Target: GithubHint.sol

Description

GithubHint allows anyone to associate a hash to some external content (URL or GitHub
commit). A race condition may allow an attacker to preempt a GithubHint transaction and
associate the specified hash to malicious content.

In GithubHint.sol, hint and hintUrl associate a hash to some external content
(GithubHint.sol#L16-L22) :

function hint(bytes32 content, string _accountSlashRepo, bytes20 commit)
when_edit allowed(_ content) {
entries[_content] = Entry(_accountSlashRepo, _commit, msg.sender);

}

function hintURL(bytes32 _content, string _url) when_edit_allowed(_content)
{

}

entries[_content] = Entry(_url, 0, msg.sender);

Figure 1: The hint and hintURL implementations

hint and hintURL have the when_edit_allow modifier. This modifier stops the transaction
without throwing an error or returning a value if the hash has already been submitted
(GithubHint.sol#L14):

modifier when_edit allowed(bytes32 content) { if (entries|[_content].owner
= @ && entries[content].owner != msg.sender) return; ; }

Figure 2: The when_edit_allowed modifier

Ethereum transactions are not instantaneously accepted. An attacker can observe the sent
hash before network consensus. They can submit the same hash and associate it with
malicious content using the hint functions prior to the confirmation of the first transaction.
The attacker’s probability for success depends on the network state and the gas price for
each transaction. An attacker can increase the odds of their transaction confirming first by
offering a high gas price.

51

https://github.com/paritytech/contracts/blob/7defba32ebe2c63876b8b47949f971899d512c85/GithubHint.sol#L16-L22
https://github.com/paritytech/contracts/blob/7defba32ebe2c63876b8b47949f971899d512c85/GithubHint.sol#L14

Exploit Scenario

Bob uses GithubHint to associate an image with a hash in his decentralized application.
Alice steals the ownership of his entry and associates it to malicious content. As a result,
Alice is able to phish Bob's application.

Recommendation
Make hint and hintURL return a boolean denoting the call’s status to the caller.
Throw an error if the hash entry is already used.

Ensure that network latency from Ethereum transactions does not trigger unexpected
behaviors.

References
https://ethgasstation.info/

52

https://ethgasstation.info/

12. Fork re-proposition may prevent owners from accepting or rejecting a
fork
Severity: Low Difficulty: Medium

Type: Data Validation Finding ID: TOB-Parity-004
Target: Operations.sol

Description
A re-proposed fork cannot be confirmed or rejected by certain owners.

A fork can be proposed, accepted or rejected. Each fork is identified by its number.
The fork structure contains the status mapping, which is used to store the decisions of the
owners (undecided, accepted or rejected) (Operations.sol#L70-L77) :

struct Fork {
bytes32 name;
bytes32 spec;
bool hard;
bool ratified;
uint requiredCount;
mapping (bytes32 => Status) status;

Figure 1: The Fork structure

An owner can only perform one action (accept or reject) and cannot undo their choice.
Once a fork is rejected, it is deleted. The Solidity documentation states that:

delete has no effect on whole mappings (as the keys of mappings may be arbitrary and
are generally unknown). So if you delete a struct, it will reset all members that are not
mappings and also recurse into the members unless they are mappings.

As a result, a fork deletion will not delete its status mapping.
If a fork is proposed with the same number, it will reuse the memory of the deleted fork.
The new fork will also inherit the status of the deleted fork. As a result, all the owners that

took part in the deleted fork decision will be unable to take part in the confirmation of the
new fork.

53

https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/Operations.sol#L70-L77
http://solidity.readthedocs.io/en/develop/types.html?highlight=delete#delete

Exploit Scenario

Bob is the only owner of Operations and proposes the fork 0. Bob then rejects the fork 0
and re-proposes a new fork, also with the number 0. Bob is now unable to accept or reject
the new fork. In order to confirm the fork, Bob needs to add a new owner.

Recommendation
Prevent forks from being re-proposed.

Carefully review the Solidity documentation, especially the memory model.

Create unit tests. A test on the rejection API could have found this vulnerability.

54

http://solidity.readthedocs.io/en/develop/index.html

13. Owners cannot accept or reject re-proposed transactions

Severity: Low Difficulty: Medium
Type: Data Validation Finding ID: TOB-Parity-019
Target: Operations.sol

Description
A reproposed transaction cannot be confirmed or rejected by certain owners.

A transaction can be proposed, accepted or rejected. Each transaction is identified by its
number.

The transaction structure contains the status mapping, which is used to store the
decisions of the owners (undecided, accepted or rejected) (Operations.sol#L79-L86) :

struct Transaction {
uint requiredCount;
mapping (bytes32 => Status) status;
address to;
bytes data;
uint value;
uint gas;

Figure 1: The Transaction structure implementation

An owner can only perform one action (accept or reject) and cannot undo their choice.
Once a transaction is accepted or rejected, it is deleted. The Solidity documentation states
that:

delete has no effect on whole mappings (as the keys of mappings may be arbitrary and
are generally unknown). So if you delete a struct, it will reset all members that are not
mappings and also recurse into the members unless they are mappings.

As a result, a transaction deletion will not delete its status mapping.

If a transaction is proposed with the same number, it will reuse the memory of the deleted
transaction. The new transaction will also inherit the status of the deleted transaction. As
a result, all the owners that took part in the acceptance or deletion of the original

transaction will be unable to take part in the confirmation of the new transaction.

Note: this issue is similar to TOB-Parity-004.

55

https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/Operations.sol#L79-L86
http://solidity.readthedocs.io/en/develop/types.html?highlight=delete#delete

Exploit Scenario

Bob is the only owner of Operations and proposes a transaction. Alice accepts the
transaction. Eve proposes a new transaction with the same number. Bob and Alice are now
unable to accept or reject Eve's transaction.

Recommendation
Prevent transactions from being re-proposed.

Carefully review the Solidity documentation, especially the memory model.

Create unit tests. A test on the rejection API could have found this vulnerability.

56

http://solidity.readthedocs.io/en/develop/index.html

14. Lack of argument validation may lead to incorrect deletion of badge
information

Severity: Low Difficulty: High

Type: Data Validation Finding ID: TOB-Parity-025

Target: BadgeReg.sol

Description
A lack of validation in unregister may lead to the incorrect deletion of information.

A Badge contains an address and a name (BadgeReg.sol#L22-124):

struct Badge {
address addr;
bytes32 name;

Figure 1: The Badge structure

Badges are stored in the badges array. mapFromAddress and mapFromName mappings are
used to determine the registration status of an address or a name, respectively
(BadgeReg.sol#L107-L109):

mapping (address => uint) mapFromAddress;
mapping (bytes32 => uint) mapFromName;
Badge[] badges;

Figure 2: The mapFromAddress, mapFromName and badges variables

unregister deletes a badge by removing its address from mapFromAddress and removing

its name from mapFromName (BadgeReg.sol#L52-L57):

function unregister(uint _id) only_owner public {
Unregistered(badges|[_id].name, _id);
delete mapFromAddress|[badges|[_id].addr];
delete mapFromName[badges|[_id].name];
delete badges[_id];

Figure 3: The unregister implementation

If unregister is called on a badge that has already been deleted, the deletion occurs to
address 0 and an empty string. This operation will occur even if address 0 or the empty

57

https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/BadgeReg.sol#L22-L24
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/BadgeReg.sol#L107-L109
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/BadgeReg.sol#L52-L57

string already associates to a valid badge. As a result, the address or the name of the valid
badge may be erroneously considered as unregistered.

Exploit Scenario

Alice registers a badge with an empty name. Bob, the owner of the contract, calls
unregister on an already deleted badge. An empty name is now considered as
unregistered. Eve registers a badge with an empty name. As a result, two badges with
different addresses are registered with the same empty name.

Recommendation
Prevent unregister from being called on deleted badges.

If a badge is not supposed to be registered with address 0 or an empty name, prevent the
registration in the registerAs function.

Consider checking function parameters for all unexpected values.

58

15. Deleting clients may lead to incorrect getter values

Severity: Low Difficulty: Low
Type: Data Validation Finding ID: TOB-Parity-005
Target: Operations.sol

Description
Getter functions return information on clients even after clients are deleted. This behavior
may lead to unexpected behavior in third-party applications or contracts.

The Operations contract contains a client mapping consisting of client structures
(Operations.sol#313).

mapping (bytes32 => Client) public client;

Figure 1: The client mapping

A client structure has three mappings (Operations.sol#L56-L62) :

struct Client {
address owner;
bool required;
mapping (bytes32 => Release) release;
mapping (uint8 => bytes32) current;
mapping (bytes32 => Build) build; // checksum -> Build

Figure 2: The Client structure

The client mappings can be accessed through the getters isLatest, track,
latestInTrack, build, release and checksum (Operations.sol#L226-L256).

These mappings are not deleted when the client is deleted through removeClient
(Operations.sol#L.199-L204):

function removeClient(bytes32 _client) only_owner {
setClientRequired(_client, false);
resetClientOwner(_client, 0);
delete client[_client];
ClientRemoved(_client);

Figure 3: The removeClient implementation

59

https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/Operations.sol#L313
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/Operations.sol#L56-L62
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/Operations.sol#L226-L256
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/Operations.sol#L199-L204

The solidity documentation states that:

delete has no effect on whole mappings (as the keys of mappings may be arbitrary and
are generally unknown). So if you delete a struct, it will reset all members that are not
mappings and also recurse into the members unless they are mappings.

As a result, once a client is deleted, the getters continue to return the information of
deleted clients. This behavior may cause unexpected behavior in third-party contracts.

This issue is similar to the issues TOB-Parity-009, TOB-Parity-010 and TOB-Parity-011.

Exploit Scenario
Bob is a client in Operations. Bob is subsequently removed as a client. Despite being
removed, Bob continues to appear as a client through the use of getters via a third-party.

Recommendation
Revert a call to a getter when the target is a deleted client.

Carefully review the Solidity documentation, especially the memory model.

Create unit tests. A test on the deleting API could have found this vulnerability.

60

http://solidity.readthedocs.io/en/develop/types.html?highlight=delete#delete
http://solidity.readthedocs.io/en/develop/index.html
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/Operations.sol#L199

16. Deleting entries may lead to incorrect getter value (SimpleRegistry)

Severity: Low Difficulty: Low
Type: Data Validation Finding ID: TOB-Parity-009
Target: SimpleRegistry.sol

Description
Getter functions return information on entries even after entries are deleted. This behavior
may lead to unexpected behavior in third-party applications or contracts.

The SimpleRegistry contract contains a entries mapping consisting of Entry structures
(SimpleRegistry.sol#L169).

mapping (bytes32 => Entry) entries;

Figure 1: The entries mapping

An entry structure has a mapping field (SimpleRegistry.sol#L47-L51) :

struct Entry {
address owner;
address reverse;
mapping (string => bytes32) data;

Figure 2: The Entry structure

The data mapping can be accessed through the getters getData, getAddress and getUint
(SimpleRegistry.sol#L57-L66).

This mapping is not deleted when the entry is deleted through drop
(SimpleRegistry.sol#1.94-199):

function drop(bytes32 _name) only_owner_of(_name) returns (bool
success) {

delete reverses|[entries|[_name].reverse];

delete entries|[_name];

Dropped(_name, msg.sender);

return true;

Figure 3: The drop implementation

The Solidity documentation states that:

61

https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/SimpleRegistry.sol#L169
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/SimpleRegistry.sol#L47-L51
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/SimpleRegistry.sol#L57-L66
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/SimpleRegistry.sol#L94-L99
http://solidity.readthedocs.io/en/develop/types.html?highlight=delete#delete

delete has no effect on whole mappings (as the keys of mappings may be arbitrary and
are generally unknown). So if you delete a struct, it will reset all members that are not
mappings and also recurse into the members unless they are mappings.

As a result, once a entry is deleted, the getters continue to return the information of
deleted entries. This behavior may cause unexpected behavior in third-party contracts.

This issue is similar to the issues TOB-Parity-005, TOB-Parity-010 and TOB-Parity-011.

Exploit Scenario
Bob reserves an entry in SimpleRegistry. Bob's entry is removed. Despite being removed,
Bob’s entry continues to appear as a valid entry through the use of getter via a third-party.

Recommendation
Revert a call to a getter when the target is a deleted badge.

Carefully review the Solidity documentation, specifically the memory model.

Create a unit test for this functionality. A test on the deleting APl may have found this
vulnerability.

62

http://solidity.readthedocs.io/en/develop/index.html
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/SimpleRegistry.sol#L94-L99

17. Deleting dapps may lead to incorrect getter value (DappReg)

Severity: Low Difficulty: Low
Type: Data Validation Finding ID: TOB-Parity-010
Target: DappReg.sol

Description
Getter functions return information on dapps even after dapps are deleted. This behavior
may lead to unexpected behavior in third-party applications or contracts.

The DappReg contract contains a dapps mapping consisting of Dapp structures
(DappReg.sol#L56).

mapping (bytes32 => Dapp) dapps;

Figure 1: The dapps mapping

A Dapp structure has a mapping field (DappReg.sol#L25-L29) :

struct Dapp {
bytes32 id;
address owner;
mapping (bytes32 => bytes32) meta;

Figure 2: The Dapp structure

The meta mapping can be accessed through the getter meta(bytes32 _id, bytes32 _key)
(DappReg.sol#L93-L96).

This mapping is not deleted when the dapp is deleted through unregister
(DappReg.sol#L87-191):

// remove apps

function unregister(bytes32 id) either_owner(_id) public {
delete dapps[_id];
Unregistered(_id);

Figure 3: The unregister implementation

The solidity documentation states that:

63

https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/DappReg.sol#L56
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/DappReg.sol#L25-L29
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/DappReg.sol#L93-L96
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/DappReg.sol#L87-L91
http://solidity.readthedocs.io/en/develop/types.html?highlight=delete#delete

delete has no effect on whole mappings (as the keys of mappings may be arbitrary and
are generally unknown). So if you delete a struct, it will reset all members that are not
mappings and also recurse into the members unless they are mappings.

As a result, once a dapp is deleted, the getter continues to return the information of
deleted dapps. This behavior may cause unexpected behavior in third-party contracts.

This issue is similar to the issues TOB-Parity-005, TOB-Parity-009 and TOB-Parity-011.

Exploit Scenario

Bob registers a dapp in DappReg. Bob's dapp is removed. Despite being removed, Bob’s
dapp continues to appear as a valid dapp through the use of getter via a third-party.

Recommendation
Revert a call to a getter when the target is a deleted dapp.

Carefully review the Solidity documentation, specifically the memory model.

Create unit test. A test on the deleting API could have found this vulnerability.

64

http://solidity.readthedocs.io/en/develop/index.html
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/DappReg.sol#L87-L91

18. Deleting badges may lead to incorrect getter value (BadgeReg)
Severity: Low Difficulty: Low

Type: Data Validation Finding ID: TOB-Parity-011

Target: BadgeReg.sol

Description
Getter functions return information on badges even after badges are deleted. This
behavior may lead to unexpected behavior in third-party applications or contracts.

The BadgeReg contract contains a badges array consisting of Badge structures
(BadgeReg.sol#L109).

Badge[] badges;

Figure 1: The badges mapping

A Badge structure has a mapping field (BadgeReg.sol#L22-127) :

struct Badge {
address addr;
bytes32 name;
address owner;
mapping (bytes32 => bytes32) meta;

Figure 2: The Badge structure

The meta mapping can be accessed through the getter meta(uint _id, bytes32 _key)
(BadgeReg.sol#L86-L88).

This mapping is not deleted when the badge is deleted through unregister
(BadgeReg.sol#L52-L57):

function unregister(uint _id) only_owner public {
Unregistered(badges|[_id].name, _id);
delete mapFromAddress|[badges|[_id].addr];
delete mapFromName[badges[_id].name];
delete badges|[_id];

Figure 3: The unregister implementation

The Solidity documentation states that:

65

https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/BadgeReg.sol#L109
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/BadgeReg.sol#L22-L27
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/BadgeReg.sol#L86-L88
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/BadgeReg.sol#L52-L57
http://solidity.readthedocs.io/en/develop/types.html?highlight=delete#delete

delete has no effect on whole mappings (as the keys of mappings may be arbitrary and
are generally unknown). So if you delete a struct, it will reset all members that are not
mappings and also recurse into the members unless they are mappings.

As a result, once a badge is deleted, the getter continues to return the information of
deleted badges. This behavior may cause unexpected behavior in third-party contracts.

This issue is similar to the issues TOB-Parity-005, TOB-Parity-009 and TOB-Parity-010.

Exploit Scenario
Bob registers a badge in BadgeReg. Bob’s badge is removed. Despite being removed, Bob's
badge continues to appear as a valid badge through the use of getter via a third-party.

Recommendation
Revert a call to a getter when the target is a deleted badge.

Carefully review the Solidity documentation, specifically the memory model.

Create a unit test for this functionality. A test on the deleting APl may have found this
vulnerability.

66

http://solidity.readthedocs.io/en/develop/index.html
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/BadgeReg.sol#L52-L57

19. Empty keyServerlp may lead to incorrect keyServersList

Severity: Informational Difficulty: Low
Type: Data Validation Finding ID: TOB-Parity-020
Target: key_servers_set.sol

Description

KeyServerSet keeps a list of server names associated with IP addresses. A server name can
be associated only once. This assumption can be broken by associating a server name with
an empty IP address.

addKeyServer associates a server name with an IP address (key servers set.sol#L63-L74):

// Add new key server to set.
function addKeyServer(bytes keyServerPublic, string keyServerlIp)
public only owner valid public(keyServerPublic)
new_key_server(computeAddress(keyServerPublic)) {
// compute address from public
address keyServer = computeAddress(keyServerPublic);
// fire event
KeyServerAdded(keyServer);
// append to the list and to the map
keyServers|keyServer]|.index = keyServersList.length;
keyServers|keyServer].publicKey = keyServerPublic;
keyServers|[keyServer].ip = keyServerlp;
keyServersList.push(keyServer);

Figure 1: The addKeyServer implementation
keyServerslList stores all the associations.

addKeyServer has the new_key_server modifier to ensure that the server name is not
currently associated (key_servers set.sol#L43-144):

// Only run if server is not currently in the set.
modifier new_key server(address keyServer) {
require(sha3(keyServers|[keyServer].ip) == sha3(""));

i

Figure 2: The new_key_server implementation

67

https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/secret_store/key_servers_set.sol#L63-L74
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/secret_store/key_servers_set.sol#L43-L44

If a server name is associated with an empty-string IP address, new_key_server will return
true. As a result, keyServersList can contain multiple associations for the same server
name.

Recommendation
Ensure that keyServerIp is not an empty string.

Consider checking function parameters for all unexpected values.

68

20. Contracts specify outdated compiler version

Severity: Informational Difficulty: Undetermined
Type: Patching Finding ID: TOB-Parity-026
Target: All smart contracts

Description
Some Parity contracts specify an outdated version of the Solidity compiler.

The Solidity compiler is under active development. Each new version contains new checks
and warnings for suspect code.

= SMT Checker: Take if-else branch conditions into account in the SMT encoding of the program
variables.

+ Syntax Checker: Deprecate the var keyword (and mark it an error as experimental 0.5.0 feature).
* Type Checker: Allow this.f.selector tobe a pure expression.
+ Type Checker: Issue warning for using public wisibility for interface functions.

= Type Checker: Limit the number of warnings raised for creating abstract contracts.

Figure 1: Solidity releases new checks and warnings for suspect code in each new version

Running the latest available compiler (0.4.20 as of this writing) on the Parity contracts
codebase emits warnings that should be fixed.

There are also inconsistencies in the Solidity compiler version requirements between
contracts and their dependencies. For example, SimpleCertifier.sol requires Solidity 0.4.7
while Owned.sol, a contract which SimpleCertifier.sol imports, requires Solidity 0.4.17.

Recommendation

Ensure that the latest version of Solidity compiles all code without warnings. Compiler
warnings are often indicators of bugs that may only manifest at runtime or under specific
conditions. Newer versions of Solidity emit warnings for a broader set of error-prone
programming practices.

Standardize the version of Solidity required by contracts and their dependencies.

69

https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/SimpleCertifier.sol
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/Owned.sol
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/SimpleCertifier.sol

A. Vulnerability Classifications

Vulnerability Classes

Class

Description

Access Controls

Related to authorization of users and assessment of rights

Auditing and Logging

Related to auditing of actions or logging of problems

Authentication

Related to the identification of users

Configuration

Related to security configurations of servers, devices or software

Cryptography

Related to protecting the privacy or integrity of data

Data Exposure

Related to unintended exposure of sensitive information

Data Validation

Related to improper reliance on the structure or values of data

Denial of Service

Related to causing system failure

Error Reporting

Related to the reporting of error conditions in a secure fashion

Patching

Related to keeping software up to date

Session Management

Related to the identification of authenticated users

Timing

Related to race conditions, locking or order of operations

Undefined Behavior

Related to undefined behavior triggered by the program

70

Severity Categories

Severity

Description

Informational

The issue does not pose an immediate risk, but is relevant to security
best practices or Defense in Depth

Undetermined

The extent of the risk was not determined during this engagement

Low The risk is relatively small or is not a risk the customer has indicated is
important

Medium Individual user's information is at risk, exploitation would be bad for
client's reputation, moderate financial impact, possible legal
implications for client

High Large numbers of users, very bad for client’s reputation, or serious

legal or financial implications

Difficulty Levels

Difficulty

Description

Undetermined

The difficulty of exploit was not determined during this engagement

Low Commonly exploited, public tools exist or can be scripted that exploit
this flaw

Medium Attackers must write an exploit, or need an in-depth knowledge of a
complex system

High The attacker must have privileged insider access to the system, may

need to know extremely complex technical details or must discover
other weaknesses in order to exploit this issue

71

B. Code Quality Recommendations

The following recommendations are not associated with specific vulnerabilities. However,
they enhance code readability and may prevent the introduction of vulnerabilities in the

future.

Smart Contracts General Recommendations

Make the visibility of functions explicit. This would prevent mistakes regarding a
function’s scope.

Use import instead of copying and pasting code. It is difficult to keep copied code
up-to-date.

When possible, use interface instead of abstract contract. Interface makes the
inheritance clearer.

Use require in modifiers instead of if-then-else structures. require makes the code
more readable.

Ensure that comments in the source code are in sync with the behavior of the
source code.

Operations.sol

Do not shadow built-in Solidity variables such as now and tx. The now variable is
shadowed in ClientOwnercChanged, ClientRequiredChanged and OwnerChanged.
The tx variable is shadowed in checkProxy.

Be explicit in the documentation about the behavior of Operations when there is
only one required client. In this case, all the transactions are directly executed when
proposed and there is no need to call the confirmation function. Incorrect usage
may result from this undocumented behavior.

SMSVerification.sol and SimpleCertifier.sol

Remove duplicate contracts. The version of the SimpleCertifier contractin
SMSVerification.sol is slightly different than the version of the SimpleCertifier
contract in SimpleCertifier.sol. It includes visibility modifiers and has been
updated to use require(). Consider consolidating these into one implementation
to prevent future desynchronization and the potential for future unexpected
behaviors.

Clarify the expected behavior of SimpleCertifier in case of failure.
SMSVerification.SimpleCertifier and SimpleCertifier.SimpleCertifier are
meant to be equivalent, but differ in case of failure:
SMSVerification.SimpleCertifier throws an error while
SimpleCertifier.SimpleCertifier returns without error.

SimpleRegistry.sol

72

http://solidity.readthedocs.io/en/develop/contracts.html?highlight=interface#interfaces
http://solidity.readthedocs.io/en/develop/contracts.html?highlight=interface#abstract-contracts

e Do not shadow built-in Solidity keywords such as reserved.

ProofOfEmail.sol
e Use a non-zero value for fee to avoid triggering events for free during contract
deployment.

Configuration Recommendations

e Consider setting more restrictive permissions by removing group and world access
from vault.json.

73

C.Slither

Trail of Bits has included our Solidity static analyzer, Slither, with this report. Slither works
on the Abstract Syntax Tree (AST) generated by the Solidity compiler and detects some of
the most common smart contract security issues including:

The lack of a constructor

The presence of unprotected functions

Uninitialized variables

Unused variables

Functions declared as constant that change the state
Deletion of a structure containing a mapping

Slither is an unsound static analyzer and may report false positives. The lack of proper
support for inheritance and some object types (such as arrays) may lead to false positives.

Usage
Launch the analysis on the Soldity file:
$ python /path/to/slither.py file.sol

Example

In the example below, Slither found that the structure Badge in the contract BadgeReg is
deleted in unregister but contains a mapping. This corresponds to TOB-Parity-011.

$ python slither.py BadgeReg.sol

INFO:Slither:Deletion on struct with mapping in
parity/BadgeReg.sol.ast.json, Contract: BadgeReg, Func/Struct:
[(u'unregister', u'Badge')]

Discovered Issues in Parity Code

Slither found issues in the Parity codebase that - due to time constraints - we did not fully
investigate to determine their validity. These issues included:

Incorrect constructor name in SignedReceipter

Deletion of a structure containing a mapping in TokenReg
tokenRecorder is used but never assigned in DutchBuyin
Record is used but never assigned in FairReceipter

74

https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/Receipter.sol#L103-L109
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/TokenReg.sol#L58
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/DutchBuyin.sol#L361
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/DutchBuyin.sol#L219
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/DutchBuyin.sol
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/FairReceipter.sol#L345
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/FairReceipter.sol#L460-L462
https://github.com/paritytech/contracts/blob/cd115965ac3d7af28bf1daec1a20bf62acf753ea/FairReceipter.sol

D. Fix Log

Trail of Bits performed a retest of the Parity system during the weeks of June 11 and July 2,
2018. Parity provides fixes and supporting documentation for the findings outlined in their
most recent security assessment report. Each of the findings was re-examined and verified
by Trail of Bits.

Prior to these reviews, Trail of Bits recommends adopting development practices that
clearly identify when and how bugs have been fixed. In particular, developers should:

e Fix each bugin a separate commit. Do not merge unrelated modifications in one
commit, it makes the review more difficult.

e Use git submodules. Do not duplicate code. Duplicated code is error-prone and
makes difficult the code update. For example Owned.sol is shared
secretstore-key-server-set, kovan-validator-set, dapp-registry and name-registry.

e Keep track of fixed issues. If you use Github to track fixes, mark the issue as
solved once it is fixed by using the “Fixed” syntax.

Parity reorganized the cryptographic module into ethcore-crypto and fully addressed four
issues, partially addressed three issues, and did not address one issue in the Rust code. In
particular, the majority, but not all, of the cryptographic code was ported from rust-crypto
to ring. Trail of Bits recommend future review of ethcore-crypto due to these recent
modifications.

Parity reorganized the smart contracts and split them into separate repositories. All the
identified smart contract issues were fully addressed or the affected contract was
deprecated. The new method of organizing the contracts more clearly identifies its scope:

KeyServerSet —_https://github.com/parity-contracts/secretstore-key-server-set
Operations (auto-update) — _https://github.com/parity-contracts/auto-updater
Badge contracts (sms/email verification) = deprecated

Dapp https://github.com/parity-contracts/dapp-registry/

Urlhint — _https://github.com/parity-contracts/github-hint

RelaySet —_https://github.com/parity-contracts/kovan-validator-set
InnerOwnedSet — _https://github.com/parity-contracts/kovan-validator-set
SimpleRegistrar —_https://github.com/parity-contracts/name-registry
SimpleCertifier —_https://github.com/parity-contracts/name-registry

75

https://github.com/parity-contracts/secretstore-key-server-set/blob/5d83ee1ae40d649564affa91b0e440c72225a2a9/contracts/Owned.sol
https://github.com/parity-contracts/kovan-validator-set/blob/master/contracts/interfaces/Owned.sol
https://github.com/parity-contracts/dapp-registry/blob/9445b2db35422fde290f216b3080e41197eb9ab8/contracts/Owned.sol
https://github.com/parity-contracts/name-registry/blob/12282e0b20f9e6d611237a59014f33c317c9a648/contracts/Owned.sol
https://help.github.com/articles/closing-issues-using-keywords/
https://github.com/briansmith/ring
https://github.com/parity-contracts/secretstore-key-server-set/tree/5d83ee1ae40d649564affa91b0e440c72225a2a9
https://github.com/parity-contracts/secretstore-key-server-set
https://github.com/parity-contracts/auto-updater/tree/5496aa730b242d4ffbd2846497718068d7062bdf
https://github.com/parity-contracts/auto-updater
https://github.com/parity-contracts/dapp-registry/tree/9445b2db35422fde290f216b3080e41197eb9ab8
https://github.com/parity-contracts/github-hint/tree/c1c0116e4678a1b71a3d97a3f04e4a8fd6e7e323
https://github.com/parity-contracts/github-hint
https://github.com/parity-contracts/kovan-validator-set
https://github.com/parity-contracts/kovan-validator-set
https://github.com/parity-contracts/name-registry/tree/12282e0b20f9e6d611237a59014f33c317c9a648
https://github.com/parity-contracts/name-registry
https://github.com/parity-contracts/name-registry/tree/12282e0b20f9e6d611237a59014f33c317c9a648

Rust Fix Log

| Title Severity Status

1 | Key files may be deleted without High Fixed
authorization during wallet import

2 | Rust-crypto is not recommended for High Partial fix (*)
security-critical usage

3 HMAC comparison in do _decrypt is Medium Fixed
vulnerable to timing attacks

4 | "single message" crypto operations lack Medium Fixed
authentication due to using AES-CTR

5 | Deserialized address field in SafeAccount | Medium Not fixed (**)
is not properly sanitized

6 | Content-Security-Policy is overly Low Partial fix (***)
permissive

7 | Confidential information resides in Low Fixed
memory for too long

8 | Parity executables on Windows lack code | Low Partial fix (***%*)
signatures

(*) See TOB-Parity-028 Fix
(**) See TOB-Parity-021 Fix
(***) See TOB-Parity-001 Fix
(****) See TOB-Parity-028 Fix

76

https://github.com/paritytech/parity-ethereum/pull/8910
https://github.com/paritytech/parity/pull/8432/files
https://github.com/paritytech/parity/pull/8113/files
https://github.com/paritytech/parity/pull/8125/files
https://github.com/paritytech/parity/pull/7867
https://github.com/paritytech/parity/pull/8920
https://github.com/paritytech/parity/pull/8930

Solidity Fix Log

| Title Severity Status

1 | Re-entrancy may lead to stolen ethers High Fixed

2 Missing loop iteration leads to Medium Fixed
non-removable validator

3 Incorrect interface implementation leads | Medium Fixed
to unexpected behavior

4 Incorrect conditional prevents fork Medium Fixed
rejection

5 | Uninitialized value leads to an Medium Fixed
unmodifiable owners list

6 | Race condition may preempt an Medium Deprecated
Ethereum address to email association

7 | Incorrect interfaces may lead to Medium Deprecated
unexpected behavior

8 Incorrect authorization prevents the Medium Fixed
calling of reporting functions

9 | “Unrequired” clients can remove a Medium Fixed
“required” client's privilege

10 | Missing contract existence check may Medium Fixed
cause unexpected behavior

11 | Race condition may lead to content Medium Fixed
compromise

12 | Fork re-proposition may prevent owners Low Fixed
from accepting or rejecting a fork

13 | Owners cannot accept or reject Low Fixed
re-proposed transactions

14 | Lack of argument validation may lead to Low Deprecated
incorrect deletion of badge information

15 | Deleting clients may lead to incorrect Low Fixed

getter values

77

https://github.com/parity-contracts/auto-updater/tree/5496aa730b242d4ffbd2846497718068d7062bdf
https://github.com/parity-contracts/kovan-validator-set/blob/e18b4437a5dcbf385bd1765304297ca19631a744/contracts/interfaces/BaseOwnedSet.sol#L94-L103
https://github.com/parity-contracts/name-registry/commit/28466ef010973c761e1397a4263dcdda61d467d2
https://github.com/parity-contracts/auto-updater/blob/6e6158e863dd705b4a8ae22883bbc174fcff2223/contracts/SimpleOperations.sol
https://github.com/parity-contracts/kovan-validator-set/pull/9
https://github.com/parity-contracts/kovan-validator-set/pull/9
https://github.com/parity-contracts/auto-updater/blob/5496aa730b242d4ffbd2846497718068d7062bdf/contracts/SimpleOperations.sol#L61
https://github.com/parity-contracts/kovan-validator-set/pull/9
https://github.com/parity-contracts/github-hint/blob/c1c0116e4678a1b71a3d97a3f04e4a8fd6e7e323/contracts/GithubHint.sol#L30
https://github.com/parity-contracts/auto-updater/blob/6e6158e863dd705b4a8ae22883bbc174fcff2223/contracts/SimpleOperations.sol
https://github.com/parity-contracts/auto-updater/blob/5496aa730b242d4ffbd2846497718068d7062bdf/contracts/Operations.sol
https://github.com/parity-contracts/auto-updater/commit/c46a364cd30d56fd431ac8f3dea641f98f047bc8

16 | Deleting entries may lead to incorrect Low Fixed
getter value (SimpleRegistry)

17 | Deleting dapps may lead to incorrect Low Fixed
getter value (DappReg)

18 | Deleting badges may lead to incorrect Low Deprecated
getter value (BadgeReg)

19 | Empty keyServerlp may lead to incorrect Informational Fixed
keyServersList

20 | Contracts specify outdated compiler Informational | Fixed

version

78

https://github.com/parity-contracts/name-registry/blob/12282e0b20f9e6d611237a59014f33c317c9a648/contracts/SimpleRegistry.sol#L55-L64
https://github.com/parity-contracts/dapp-registry/pull/1
https://github.com/parity-contracts/secretstore-key-server-set/pull/4/files

Detailed Issue Discussions

In this section, we note reasons why certain issues are labeled “Unfixed” or “Partial Fix.”
Responses from Parity about each outstanding issue are included as quotes.

TOB-Parity-001 Fix

unsafe-eval is still present in some Dapps.

Won't fix. Some dapps require “eval " to provide their functionality, e.g. web3 console.
We've made some changes so that dapps must explicitly require "unsafe-eval " in their
manifest.

TOB-Parity-021 Fix
Fixing this issue necessitates a change in the user interface that was not made.

Won't fix. This is mostly outside of our security model since it involves access to the local
hard drive, furthermore the fix would require Ul changes and we are reducing our
investment on the Ul (in the latest releases it is no longer part of the binary).

TOB-Parity-027 Fix
The uninstaller is not included in the list of executables to be signed.

The only Windows binary currently not signed is the uninstaller since it will be removed in
an upcoming release (expected lifetime of the uninstaller is another 8 weeks).

TOB-Parity-028 Fix
Refactored cryptographic components still use rust-crypto.

We have replaced some usages with implementations from “ring " but it doesn't provide
replacements for all usages from “rust-crypto . The alternative would be to depend on a
C/C++ crypto library but that goes against our goals of eventually compiling parity to
WebAssembly, and it is very likely that Rust bindings would be unaudited. For now we will
continue the existing work of migrating to ‘ring " and we will consider other Rust crypto
implementations as they appear. Eventually having “ring "~ (or other crypto library we
may rely on) audited is also a possibility.

79

https://github.com/paritytech/parity/blob/b37b3cd1fcd5b2c6c9dc21cbedc4805492d2f39c/ethcore/crypto/Cargo.toml#L10

About Trail of Bits

Since 2012, Trail of Bits has helped secure some of the world's most targeted organizations
and devices. We combine high-end security research with a real-world attacker mentality to
reduce risk and fortify code.

Our clientele—ranging from Facebook to DARPA—Ilead their industries. Their dedicated
security teams come to us for our foundational tools and deep expertise in reverse
engineering, cryptography, virtualization, blockchain, and software exploits. According to
their needs, we may review their products or networks, consult on the modifications
necessary for a secure deployment, or develop the features that close their security gaps.

After solving the problem at hand, we continue to refine our work in service to the deeper
issues. The knowledge we gain from each engagement and research project further hones
our tools and processes, and extends our software engineers’ abilities. We believe the most
meaningful security gains hide at the intersection of human intellect and computational
power.

Find out more about Trail of Bits on our website and blog.

80

https://www.trailofbits.com/
https://blog.trailofbits.com/

